
DRAFT

This material will be published by Cambridge University Press as:
Mathematical Logic through Python by Yannai A. Gonczarowski and Noam Nisan

This pre-publication version is free to view and download for personal use only. Not for re-distribution,
re-sale or use in derivative works. Please link to: www.LogicThruPython.org

© Yannai A. Gonczarowski and Noam Nisan 2017–2020.

Chapter 0:

Preface and Overview

Assume that all Greeks are Men. Assume also that all Men are mortal. It follows
logically that all Greeks are mortal.

This deduction is remarkable in the sense that we can make it even without under-
standing anything about Greeks, Men, or mortality. The same deduction can take the
assumptions that all Greeks are fish and that all fish fly and conclude that all Greeks
fly. As long as the assumptions are correct, so is the conclusion. If one or more of the
assumptions is incorrect, then all bets are off and the conclusion need not hold. How
are such “content free” deductions made? When is such a deduction valid? For example,
assume that some Greeks are Men and that some Men are mortal; does it follow that
some Greeks are mortal? No!

The field of Logic deals exactly with these types of deductions—those that do not
require any specific knowledge of the real world, but rather take statements about the
world and deduce new statements from them, new statements that must be true if the
original ones are. Such deductions are a principal way by which we can extend our
knowledge beyond any facts that we directly observe. While in many fields of human
endeavor logical deductions go hand in hand with other techniques of observing and
understanding the actual facts of the world, in the field of Mathematics logical deductions
serve as the sole paradigmatic foundation.

A crucial property of logical deduction is that it is purely syntactic rather than
semantic. That is, the validity of a logical inference is completely determined by its
language, its form, its syntax. Nothing about the actual meaning of the assumptions or
conclusion, such as their truth or falsehood, is involved. The usefulness, however, of such
deductions comes from the, perhaps surprising, fact that their conclusions do turn out to
be true in the meaningful, semantic, sense. That is, whenever the assumptions are true,
also the conclusion happens to be true—and this happens despite the fact that the deduc-
tion process itself was completely oblivious to said truth! Indeed, the clear separation be-
tween syntactic notions and semantic ones, as well as establishing the connections between
them, are the core of the study of Logic. There are several different possible motivations
for such study, and these different motivations influence the type of issues emphasized.

Philosophers usually use Logic as a tool of the trade, and mostly focus on the difficult
process of translating between natural human language and logical formulas.1 These
are tricky questions mostly due to the human part of this mismatch: human language is
not completely precise, and to really understand the meaning of a sentence may require
not only logical analysis but also linguistic analysis and even social understanding. For
example, who exactly is included in the set of Greeks? When we assumed that they
are all Men, does that include or exclude Women? Without coming to grips with these
thorny questions, one cannot assess whether the assumptions are true and cannot benefit

1Another frequently used plural form of “formula,” which you may encounter in many books, is
“formulae.” For simplicity, in this book we will stick with “formulas.”

1 Draft; comments welcome

www.LogicThruPython.org

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

from the logical deduction that all Greeks are mortal.
Mathematicians also study Logic as a tool of the trade. Mathematicians usually apply

Logic to precise mathematical statements, so they put less emphasis on the mismatch
with the imprecise human language, but are rather focused on the exact rules of Logic and
on exactly understanding the formalization, process, and power of Logic itself. Indeed,
to understand the power of Logic is to understand the limits of the basic paradigm
of Mathematics and mathematical proofs, and thus the field of Mathematical Logic is
sometimes called meta-Mathematics, mathematically studying Mathematics itself.

Computer Scientists use Logic as a tool of the trade in a somewhat different sense,
often relying on logical formalisms to represent various computational abstractions. Thus,
for example, a language to access databases (e.g., SQL) may be based on some logical
formalism (e.g., Predicate Logic), and abstract computational search problems (e.g., NP
problems) may be treated as finding assignments to logical formulas (e.g., SAT).

The approach of this book is to proceed towards the goal of Mathematicians who
study Logic, using the tools of Computer Scientists, and in fact not those Computer
Scientists who study Logic, but rather more applied Computer Scientists. Specifically,
our main goal is to precisely formalize and understand the notions of a logical formula and
a deductive logic proof, and to establish their relationship with mathematical truth. Our
technique is to actually implement all these logical formulas and logical proofs as bona
fide objects in a software implementation: you will actually be asked to implement, in the
Python programming language, methods and functions that deal with Python objects like
Formula and Proof. For example, in Chapter 2 you will be asked to implement a function
is_tautology(formula) that determines if the given logical formula is a tautology, i.e.,
logically always true; while in Chapter 6 you will be asked to implement a function
proof_or_counterexample(formula) that either returns a formal logical proof of the
given formula—if it happens to be a tautology—or else returns a counterexample that
demonstrates that this formula is in fact not a tautology.

1 Our Final Destination:
Gödel’s Completeness Theorem

This book has a very clear end point to which everything leads: Gödel’s Completeness
Theorem, named after its discoverer, the Austrian (and later American) logician and
mathematician Kurt Gödel. To understand it, let us first look at the two main syn-
tactic objects that we will study and at their semantics. Our first focus of attention
is the Formula, a formal representation of certain logical relations between basic sim-
pler notions. For example a formalization of “All Men are mortal” in the form, say,
‘∀x[Man(x)→Mortal(x)]’, and we will, of course, specify exact syntactic rules for such
formulas. Now comes the semantics, that is, the notion of the meaning of such a formula.
A formula may be true or false in a particular setting, depending on the specifics of the
setting. Specifically, a formula gets a meaning only relative to a particular model, where
this model must specify all the particulars of the setting. In our example, such particulars
would include which x in the “universe” are Men and which are mortal. Once such a
model is given, it is determined whether a given formula is true in this model or not.

Our second focus of attention is the notion of a Proof. A proof again is a syntactic
object: it has a set of assumptions, a conclusion, and the core of the proof is a list of
formulas that has to conform to certain specific rules ensuring that each formula in the list

Chapter 0 2 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

“follows” in some precise syntactic sense from previous ones. If such a formal proof exists,
then we say that the conclusion is (syntactically) provable from the assumptions, which
we denote by assumptions ` conclusion. Now, again, enter the semantics, which deal with
the following question: is it the case that in every model in which all the assumptions
are true, the conclusion is also true? (This question is only about the assumptions and
the semantics, and is agnostic of the core of any proof.) If that happens to be true, then
we say that the conclusion (semantically) follows from the assumptions, which we denote
by assumptions |= conclusion. Gödel’s Completeness Theorem states the following:

Theorem (Gödel’s Completeness Theorem). For any set of assumptions and any conclu-
sion, it holds that “assumptions ` conclusion” if and only if “assumptions |= conclusion”.

This is a very remarkable theorem connecting two seemingly unrelated notions: the
existence of certain long lists of formulas built according to some syntactic rules (these
long lists are the syntactic proofs defined above), and the mathematical truth that when-
ever all assumptions are true, so invariably is the conclusion. On second thought, it does
make sense that if something is syntactically provable then it is also semantically true:
we will deliberately choose the syntactic rules of a proof to only allow true deductions.
In fact, this is the whole point of Mathematics: in order to know that whenever we add
two even numbers we get an even number, we do not need to check all possible (infinitely
many!) pairs of even numbers, but rather it suffices to “prove” the rule that even+even is
even and the whole point is that our proof system is sound: a “proved” statement must
be true (otherwise the concept of a proof would not have been of any use). The other
direction, the fact that any mathematical truth can be proven, is much more surprising:
we could have expected that the more possibilities we build into our proof system, the
more mathematical truths it can prove. It is far from clear that any specific, finite, syn-
tactic set of rules for forming proofs should suffice for proving everything that is true.
And yet, for the simple syntactic set of logical rules that we will present, this is exactly
what Gödel’s Completeness Theorem establishes.

One can view this as the final triumph of mathematical reasoning: our logical notion of
proof completely suffices to establish any consequence of any list of assumptions. Given
a set of axioms of, e.g., a mathematical field (or any other mathematical structure),
anything that holds for all fields can actually be logically proven from the field axioms!

Unfortunately, shortly after proving this Completeness Theorem, Gödel turned his
attention to the question of finding the “correct” set of axioms to capture all of Math-
ematics. What was desired at the time was to find a simple set of axioms that suffices
for proving or disproving any possible mathematical statement2. We say “unfortunately”
since Gödel showed this to fail in a most spectacular way, showing that no such set of
axioms exists: for every set of axioms there will remain mathematical statements that
can neither be proved nor disproved! This is called Gödel’s Incompleteness Theorem.
Despite its name, this theorem does not in fact contradict the Completeness Theorem: it
is still true that anything that (semantically) follows from a set of axioms is syntactically
provable from it, but unfortunately there will always remain statements that neither they
nor their negation follow from the set of axioms.

One can view Gödel’s Incompleteness Theorem as the final defeat of mathematical
reasoning: there will always remain questions beyond the reach of Mathematics. But
this book—a first course in Mathematical Logic—focuses only on the triumph, i.e., on

2This desire, formulated by the German mathematician David Hilbert, was called “Hilbert’s Program.”

Chapter 0 3 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Gödel’s Completeness Theorem, leaving the defeat, the Incompleteness Theorem, for a
second course in Mathematical Logic.

2 The Pedagogical Approach
The mathematical content covered by this book is quite standard for a first course in
Mathematical Logic. Our pedagogical approach is, however, unique: we will “prove”
everything by writing computer programs.

Let us motivate this unusual choice. We find that among academic courses in Math-
ematics, the introductory Mathematical Logic course stands out as having an unusual
gap between student perceptions and our own evaluation of its content: while we (and,
we think, most Mathematicians) view the mathematical content as rather easy, students
seem to view it as very confusing relative to other Mathematics courses. While we view
the conceptual message of the course as unusually beautiful, students often fail to see this
beauty—even those that easily see the beauty of, say, Calculus or Algebra. We believe
that the reason for this mismatch is the very large gap that exists between the very ab-
stract point of view—proving things about proofs—and the very low-level technical proofs
themselves. It is easy to get confused between the proofs that we are writing and the
proofs that are our subjects of discussion. Indeed, when we say that we are “writing proofs
to prove things about proofs”, the first “proofs” and the second “proofs” actually mean
two very different things even though most introductory Mathematical Logic courses use
the same word for both. This turns out to become even more confusing as the “mechanics”
of both the proof we are writing and the proof that we are discussing are somewhat cum-
bersome while the actual point that we are making by writing these proofs is something
that we usually take for granted, so it is almost impossible to see the forest for the trees.

Computer Scientists are used to combining many “mechanical details” to get a high-
level abstract goal (this is known as “programming”), and are also used to writing pro-
grams that handle objects that are as complex as the programs themselves (such as
compilers). A large part of Computer Science exactly concerns the discussion of how
to handle such challenges both in terms of tools (debuggers, assemblers, compilers) and
it terms of paradigms (interfaces, object-orientation, testing). So this book utilizes the
tools of a Computer Scientist to achieve the pedagogical goal of teaching the mathematical
basis of Logic.

We have been able to capture maybe 95% of the mathematical content of a standard
first course in Mathematical Logic as programming tasks. These tasks capture the notions
and procedures that are studied, and the solution to each of these programming tasks can
be viewed as capturing the proof for some lemma or theorem. The reader who has actually
implemented the associated function has in effect proved the lemma or theorem, a proof
that has been verified for correctness (to some extent) once it has passed the extensive
array of tests that we provide for the task. The pedagogical gain is that confusing notions
and proofs become crystal clear once you have implemented them yourself. Indeed, in the
above sentence “writing proofs to prove things about proofs”, the first “proofs” becomes
“code” and the second “proofs” becomes “Python objects of class Proof”. Almost all the
lemmas and theorems covered by a typical introductory course in Mathematical Logic are
captured this way in this book. Essentially the only exceptions are theorems that consider
“infinite objects” (e.g. an infinite set of formulas), which cannot be directly captured by
a program that is constrained to dealing with finite objects. It turns out, however,

Chapter 0 4 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

that most of the mathematical content of even these infinitary proofs can be naturally
captured by lemmas dealing with finite objects. What remains to be made in a purely
non-programmatic mathematical way is just the core of the infinite argument, which is
the remaining 5% or so that we indeed then lay out in the classical mathematical way.

3 How We Travel: Programs that Handle Logic
This book is centered around a sequence of programming projects in the Python pro-
gramming language.3 We provide a file directory that contains a small amount of code
that we have written, together with many skeletons of functions and methods that you
will be asked to complete and an extensive array of tests that will verify that your imple-
mentation is correct. Each chapter of this book is organized around a sequence of tasks,
each of which calls for completing the implementation of a certain function or method for
which we have supplied the skeleton (which also appears as a code snippet in the book).
All of our code-base, including the already implemented parts of the code, the skeletons,
and the tests, can be downloaded from the book website at www.LogicThruPython.org.

Let us take as an example Task 2 in Chapter 1. Chapter 1 deals with propositional
formulas. You will handle such objects using code that appears in the Python file
propositions/syntax.py, which already contains the constructor for a Python class
Formula for holding a propositional formula as a tree-like data structure:4

propositions/syntax.py
class Formula:

"""An immutable propositional formula in tree representation.

Attributes:
root: the constant, atomic proposition, or operator at the root of the

formula tree.
first: the first operand to the root, if the root is a unary or binary

operator.
second: the second operand to the root, if the root is a binary

operator.
"""
root: str
first: Optional[Formula]
second: Optional[Formula]

def __init__(self, root: str, first: Optional[Formula] = None,
second: Optional[Formula] = None):

"""Initializes a `Formula` from its root and root operands.

Parameters:
root: the root for the formula tree.
first: the first operand to the root, if the root is a unary or

binary operator.
second: the second operand to the root, if the root is a binary

operator.

3Specifically, the code snippets in this book have been tested with Python 3.7. Please refer to the
book website at www.LogicThruPython.org for updated information regarding compatibility of newer
Python versions with our code-base.

4The annotations following various colons signs, as well as following the -> symbol, are called Python
type annotations and specify the types of the variables/parameters that they follow, and respectively
of the return values of the functions that they follow.

Chapter 0 5 Draft; comments welcome

https://www.LogicThruPython.org/
https://www.LogicThruPython.org/

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

"""
if is_variable(root) or is_constant(root):

assert first is None and second is None
self.root = root

elif is_unary(root):
assert type(first) is Formula and second is None
self.root, self.first = root, first

else:
assert is_binary(root) and type(first) is Formula and \

type(second) is Formula
self.root, self.first, self.second = root, first, second

The main content of Chapter 1 is captured by asking you to implement various meth-
ods and functions related to objects of class Formula. Task 2 in Chapter 1, for example,
asks you to implement the method variables() of this class, which returns a Python
set of all named atomic propositions in the formula. The file propositions/syntax.py
thus already contains also the skeleton of this method:

propositions/syntax.py
class Formula:

...
def variables(self) -> Set[str]:

"""Finds all atomic propositions (variables) in the current formula.

Returns:
A set of all atomic propositions used in the current formula.

"""
Task 1.2

To check that your implementation is correct, we also provide a corresponding test file,
propositions/syntax_test.py, which contains the following test:

propositions/syntax_test.py
def test_variables(debug=False):

for formula, expected_variables in [
(Formula('T'), set()),
(Formula('x1234'), {'x1234'}),
(Formula('˜', Formula('r')), {'r'}),
(Formula('->', Formula('x'), Formula('y')), {'x','y'}),

...
(Formula(· · ·), {· · · })]:

if debug:
print("Testing variables of", formula)

assert formula.variables() == expected_variables

All the tests of all tasks in Chapter 1 can be invoked by simply executing the Python
file test_chapter01.py, which we have also provided. The code for testing the optional
tasks of Chapter 1 is commented-out in that file, so if you choose to implement any of
these tasks, simply uncomment the corresponding line(s) in that file. If you run this file
and get no assertion errors, then you have successfully (as far as we can check) solved all
of the tasks in Chapter 1.

This chapter—Chapter 0—contains a single task, whose goal is to verify
that you have successfully downloaded our code-base from the book website at
www.LogicThruPython.org, and that your Python environment is correctly set up.

Chapter 0 6 Draft; comments welcome

https://www.LogicThruPython.org/

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Task 1. Implement the missing code for the function half(x) from the file
prelim/prelim.py, which halves an even integer. Here is the skeleton of this function
as it already appears in the file:

prelim/prelim.py
def half(x: int) -> int:

"""Halves the given even integer.

Parameters:
x: even integer to halve.

Returns:
A number `z` so that ``z+z=x``.

"""
assert x%2 == 0
Task 0.1

The solution to Task 1 is very simple, of course (return x//2, or alternatively,
return int(x/2)), but the point that we want you to verify is that you can execute
the file test_chapter00.py without getting any assertion errors, but only getting the
expected verbose listing of what was tested:

$ python test_chapter00.py
Testing half of 42
Testing half of 8
$

For comparison, executing the file test_chapter00.py with a faulty implementation
of Task 1 would raise an assertion error. For example, implementing Task 1 with, say,
return x//3, would yield the following output:

$ python test_chapter00.py
Testing half of 42
Traceback (most recent call last):

File "test_chapter00.py", line 13, in <module>
test_task1(True)

File "test_chapter00.py", line 11, in test_task1
test_half(debug)

File "prelim/prelim_test.py", line 15, in test_half
assert result + result == 42

AssertionError
$

and implementing Task 1 with, say, return x/2 (which returns a float rather than an
int), would yield the following output:

$ python test_chapter00.py
Testing half of 42
Traceback (most recent call last):

File "test_chapter00.py", line 13, in <module>
test_task1(True)

File "test_chapter00.py", line 11, in test_task1
test_half(debug)

Chapter 0 7 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

File "prelim/prelim_test.py", line 14, in test_half
assert isinstance(result, int)

AssertionError
$

4 Our Roadmap
We conclude this chapter by giving a quick overview of our journey in this book. We
study two logical formalisms: Chapters 1–6 deal with the limited Propositional Logic,
while Chapters 7–12 move on to the fuller (first-order) Predicate Logic. In each of
these two parts, we take a somewhat similar arc:

a. Define a syntax for logical formulas (Chapter 1 / Chapter 7),

b. define the semantics of said formulas (Chapter 2 / Chapter 7),

c. pause a bit in order to simplify things (Chapter 3 / Chapter 8),

d. define (syntactic) formal proofs (Chapter 4 / Chapter 9),

e. prove useful lemmas about said formal proofs (Chapter 5 / Chapters 10 and 11),

f. prove that any formula that is semantically true also has a syntactic formal proof
(Chapter 6 / Chapter 12).

Of course, the results that we prove for the simpler Propositional Logic in the first
part of this book, are then also used when dealing with Predicate Logic in the second
part of the book. Here is a more specific chapter-by-chapter overview:

1. Chapter 1 defines a syntax for Propositional Logic and shows how to handle it.

2. Chapter 2 defines the notion of the semantics of a propositional formula, giving
every formula a truth value in every given model.

3. Chapter 3 looks at the possible sets of logical operations allowed and discusses
which such subsets suffice.

4. Chapter 4 introduces the notion of a formal deductive proof.

5. Chapter 5 starts analyzing the power of formal deductive proofs.

6. Chapter 6 brings us to the pinnacle of Part I, obtaining the “Tautology Theorem,”
which is a “completeness theorem” for Propositional Logic.

7. Chapter 7 starts our journey into Predicate Logic, introducing both its syntax and
its semantics.

8. Chapter 8 is concerned with allowing some simplifications in our Predicate Logic,
specifically getting rid of the notions of functions and of equality without weakening
the expressive power of our formalism.

9. Chapter 9 introduces and formalizes the notion of a deductive proof of a formula
in Predicate Logic.

Chapter 0 8 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

10. Chapter 10 fixes a list of logical axioms and demonstrates their capabilities by
applying them to several domains from syllogisms to mathematical structures to
the foundations of Mathematics, e.g., formalizing Russell’s paradox about “the set
of all sets that do not contains themselves.”

11. Chapter 11 proves key results about the power of proofs in Predicate Logic.

12. Chapter 12 reaches the culmination of our journey by proving Gödel’s Completeness
Theorem. We also get, “for free,” the “Compactness Theorem” of Predicate Logic.

13. Finally, Chapter 13 provides a “sneak peek” into a second course in Mathematical
Logic, sketching a proof of Gödel’s Incompleteness Theorem.

Chapter 0 9 Draft; comments welcome

	1 Our Final Destination:Gödel's Completeness Theorem
	2 The Pedagogical Approach
	3 How We Travel: Programs that Handle Logic
	4 Our Roadmap

