
DRAFT

This material will be published by Cambridge University Press as:
Mathematical Logic through Python by Yannai A. Gonczarowski and Noam Nisan

This pre-publication version is free to view and download for personal use only. Not for re-distribution,
re-sale or use in derivative works. Please link to: www.LogicThruPython.org

© Yannai A. Gonczarowski and Noam Nisan 2017–2021.

Chapter 1:

Propositional Logic Syntax

In this chapter we present a formal syntax for formalizing statements within logic.
Consider the following example of a natural-language sentence that has some logical struc-
ture: “If it rains on Monday then we will either hand out umbrellas or hire a bus.” This
sentence is composed of three basic propositions, each of which may potentially be either
true or false: p1=“it rains on Monday”, p2=“we will hand out umbrellas”, and p3=“we
will hire a bus”. We can interpret this English-language sentence as logically connect-
ing these three propositions as follows: “p1 implies (p2 or p3)”, which we will write as
‘(p1→(p2|p3))’.

Our goal in this chapter is to formally define a language for capturing these types of
sentences. The motivation for defining this language is that it will allow us to precisely and
formally analyze their implications. For example, we should be able to formally deduce
from this sentence that if we neither handed out umbrellas nor hired a bus, then it did not
rain on Monday. We purposefully postpone to the next chapter a discussion of semantics,
of the meaning, that we assign to sentences in our language, and focus in this chapter only
on the syntax, i.e., on the rules of grammar for forming sentences.

1 Propositional Formulas
Our language for the first part of this book is called Propositional Logic. While there are
various variants of the exact rules of this language (allowing for various logical operators or
for various rules about whether and when parentheses may be dropped), the exact variant
used is not very important, but rather the whole point is to fix a single specific set of rules
and stick with it. Essentially everything that we say about this specific variant will hold
with only very minor modifications for other variants as well. Here is the formal definition
with which we will stick:

Definition (Propositional Formula). The following strings are (valid1) propositional
formulas:

• A variable name: a letter in ‘p’. . . ‘z’, optionally followed by a sequence of digits.
For example, ‘p’, ‘y12’, or ‘z035’.

• ‘T’.

• ‘F’.

• A negation ‘~φ’, where φ is a (valid) propositional formula.

• ‘(φ&ψ)’ where each of φ and ψ is a propositional formula.
1What we call valid formulas are often called well-formed formulas in other textbooks.

11 Draft; comments welcome

www.LogicThruPython.org

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

• ‘(φ|ψ)’ where each of φ and ψ is a propositional formula.

• ‘(φ→ψ)’ where each of φ and ψ is a propositional formula.

These are the only (valid) propositional formulas. For example, ‘~((~x&(p007|x))→F)’ is
a propositional formula.

This definition is syntactic: it specifies which strings, that is, finite sequences of
characters, are valid propositional formulas and which are not, by describing the rules
through which such strings can be formed. (Again, we have deliberately not yet assigned
any interpretation to such strings, but the reader will surely guess that the constants ‘T’
and ‘F’ stand for True and False, respectively, that the unary (operating on one subfor-
mula) operator ‘~’ stands for Not, and that the binary (operating on two subformulas)
operators ‘&’, ‘|’, and ‘→’ stand for And, Or, and Implies, respectively.) We remark that
in many logic textbooks, the symbol ‘¬’ (negation) is used instead of ‘~’, the symbol ‘∧’
(conjunction) is used instead of ‘&’, and the symbol ‘∨’ (disjunction) is used instead
of ‘|’.

Our choice of symbols in this book was indeed influenced by which symbols are easy
to type on a computer. For your convenience, the file propositions/syntax.py defines
functions for identifying strings that contain the various tokens, or basic building blocks,
allowed in propositional formulas.2 The symbol ‘→’ is not a standard character, so in
Python code we will represent it using the two-character sequence '−>'.

propositions/syntax.py

def is_variable(string: str) -> bool:
"""Checks if the given string is a variable name.

Parameters:
string: string to check.

Returns:
``True`` if the given string is a variable name, ``False`` otherwise.

"""
return string[0] >= 'p' and string[0] <= 'z' and \

(len(string) == 1 or string[1:].isdigit())

def is_constant(string: str) -> bool:
"""Checks if the given string is a constant.

Parameters:
string: string to check.

Returns:
``True`` if the given string is a constant, ``False`` otherwise.

"""
return string == 'T' or string == 'F'

2The decorator that precedes the definition of each of these functions in the code that you are given
memoizes the function, so that if any of these functions is called more than once with the same argument,
the previous return-value for that argument is simply returned again instead of being recalculated. This
has no effect on code correctness since running these functions has no side effects, and their return values
depend only on their arguments and are immutable, but this does speed-up the execution of your code. It
may seem silly to perform such optimizations with such short functions, but this will in fact dramatically
speed-up your code in later chapters, when such functions will be called many many times from within
various recursions. We use this decorator throughout the code that you are given in various places where
there are speed improvements to be gained.

Chapter 1 12 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

def is_unary(string: str) -> bool:
"""Checks if the given string is a unary operator.

Parameters:
string: string to check.

Returns:
``True`` if the given string is a unary operator, ``False`` otherwise.

"""
return string == '˜'

def is_binary(string: str) -> bool:
"""Checks if the given string is a binary operator.

Parameters:
string: string to check.

Returns:
``True`` if the given string is a binary operator, ``False`` otherwise.

"""
return string == '&' or string == '|' or string == '->'

Notice that the definition of a propositional formula is very specific about the use
of parentheses: ‘(φ&ψ)’ is a valid formula, but ‘φ&ψ’ is not and neither is ‘((φ&ψ))’;
likewise, ‘~φ’ is a valid formula but ‘(~φ)’ is not, etc. These restrictive choices are made to
ensure that there is a unique and easy way to parse a formula: to take a string that is a
formula and figure out the complete derivation tree of how it is decomposed into simpler
and simpler formulas according to the derivation rules from the above definition. Such
a derivation tree is naturally expressed in a computer program as a tree data structure,
and this book’s pedagogical approach is to indeed implement it as such. So, the bulk
of the tasks of this chapter are focused on translating formulas back and forth between
representation as a string and as an expression-tree data structure.

The file propositions/syntax.py defines a Python class Formula for holding a propo-
sitional formula as a data structure.

propositions/syntax.py

@frozen
class Formula:

"""An immutable propositional formula in tree representation, composed from
variable names, and operators applied to them.

Attributes:
root: the constant, variable name, or operator at the root of the

formula tree.
first: the first operand of the root, if the root is a unary or binary

operator.
second: the second operand of the root, if the root is a binary

operator.
"""
root: str
first: Optional[Formula]
second: Optional[Formula]

def __init__(self, root: str, first: Optional[Formula] = None,
second: Optional[Formula] = None):

Chapter 1 13 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

"""Initializes a `Formula` from its root and root operands.

Parameters:
root: the root for the formula tree.
first: the first operand for the root, if the root is a unary or

binary operator.
second: the second operand for the root, if the root is a binary

operator.
"""
if is_variable(root) or is_constant(root):

assert first is None and second is None
self.root = root

elif is_unary(root):
assert first is not None and second is None
self.root, self.first = root, first

else:
assert is_binary(root)
assert first is not None and second is not None
self.root, self.first, self.second = root, first, second

The constructor of this class (which we have already implemented for you) takes as ar-
guments the components (between one and three) of which the formula is composed, and
constructs the composite formula. For instance, to represent the formula ‘(φ&ψ)’, the
constructor will be given the three “components”: the operator ‘&’ that will serve as the
“root” of the tree, and the two subformulas φ and ψ.

Example. The data structure for representing the formula ‘~(p&q76)’ is constructed using
the following code:

my_formula = Formula('˜', Formula('&', Formula('p'), Formula('q76')))

The various components of my_formula from the above example can then be accessed
using the instance variables my_formula.root for the root, my_formula.first for the first
subformula (if any), and my_formula.second for the second subformula (if any). To enable
the safe reuse of existing formula objects as building blocks for other formula objects (and
even as building blocks in more than one other formula object, or as building blocks that
appear more than once in the same formula object), we have defined the Formula class
to be immutable, i.e., we have defined it so that my_formula.root, my_formula.first,
and my_formula.second cannot be assigned to after my_formula has been constructed.
E.g., you can verify that after my_formula is constructed as above, attempting to assign
my_formula.first = Formula('q4') fails. This is achieved by the @frozen decorator
that appears just before the class definition.3 Most of the classes that you will implement
as you work through this book will be made immutable in this way.

Your first task is to translate the expression-tree representation of a formula into its
string representation. This can be done using recursion: suppose that you know how to
convert two tree data-structures formula1 and formula2 (that are both Python objects
of type Formula) into strings; how can you convert, into such a string, a tree data struc-
ture of type Formula that has '&' at its root, and formula1 and formula2 as its two
children/subformulas?

3The definition of this decorator is in the file logic_utils.py that we have provided to you, and which
we imported for you into propositions/syntax.py.

Chapter 1 14 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Task 1. Implement the missing code for the method4 __repr__() of class Formula,
which returns a string that represents the formula (in the syntax defined above). Note
that in Python, the string returned by, e.g., formula.__repr__() is also returned by
str(formula), so by solving this task you will also be implementing the functionality of
the latter.

propositions/syntax.py

class Formula:
...

def __repr__(self) -> str:
"""Computes the string representation of the current formula.

Returns:
The standard string representation of the current formula.

"""
Task 1.1

Example: For the formula my_formula defined in the example above,
my_formula.__repr__() (and hence also str(my_formula)) should return the string
'˜(p&q76)'.

The next two tasks ask for getting a summary of the components of a given formula:
the variable names used in it, and the operators used in it (where we treat ‘T’ and ‘F’ as
operators too—we will discuss the rationale behind this definition in Chapter 3).

Task 2. Implement the missing code for the method variables() of class Formula, which
returns all of the variable names that appear in the formula. Recall that a variable name
is a leaf of the tree whose label is a letter in ‘p’. . . ‘z’ optionally followed by a nonnegative
integer.

propositions/syntax.py

class Formula:
...

def variables(self) -> Set[str]:
"""Finds all variable names in the current formula.

Returns:
A set of all variable names used in the current formula.

"""
Task 1.2

Example: For the formula my_formula defined in the example above,
my_formula.variables() should return {'p', 'q76'}.

Task 3. Implement the missing code for the method operators() of class Formula, which
returns all of the operators that appear in the formula. By operators we mean ‘~’, ‘&’, ‘|’,
‘→’, ‘T’, and ‘F’.

4The decorator that precedes the definition of __repr__() in the code that you are given memoizes
this method, so that any subsequent calls to this method (on the same Formula object) after the first
call simply return the value returned by the first call instead of recalculating it. This has no effect on
code correctness since the Formula class is immutable, running this method has no side effects, and the
returned is immutable, but this will dramatically speed-up your code in later chapters, when you handle
complex formulas. We use this decorator throughout the code that you are given in various places where
there are speed improvements to be gained.

Chapter 1 15 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

propositions/syntax.py

class Formula:
...

def operators(self) -> Set[str]:
"""Finds all operators in the current formula.

Returns:
A set of all operators (including 'T' and 'F') used in the current
formula.

"""
Task 1.3

Example: For the formula my_formula defined in the example above,
my_formula.operators() should return {'~', '&'}.

2 Parsing
Going in the opposite direction, i.e., taking a string representation of a formula and pars-
ing it into the corresponding derivation tree, is usually a bit more difficult since you
need to algorithmically figure out where to “break” the complex string representation of
the formula into the different components of the formula. This type of parsing challenge
is quite common when dealing with many cases of formal “languages” that need to be
“understood” by a computer program, the prime example being when compilers need to
understand programs written in a programming language. There is a general theory that
deals with various classes of languages as well as algorithms for parsing them, with an
emphasis on the class of context-free languages, whose grammar can be defined by a
recursive definition. The language for formulas that we chose for this book is in this class,
and is simple enough so that a simple “recursive descent” algorithm, to be described below,
can handle its parsing.

The idea is to first read the first token in the string, where a token is a basic “word”
of our language: either one of the single-letter tokens 'T', 'F', '(', ')', '~', '&', '|', or
the two-letter “implies” token '->', or a variable name like 'p' or 'q76'. This first token
will tell you in a unique way how to continue reading the rest of the string, where this
reading can be done recursively. For example, if the first token is an open parenthesis, '(',
then we know that a formula φ must follow, which can be read by a recursive call. Once φ
was recursively read, we know that the following token must be one of '&', '|', or '->',
and once this token is read then a formula ψ must follow, and then a closing parenthesis,
')'. This will become concrete as you implement the following task.

Task 4. Implement the missing code for the static method _parse_prefix(string) of
class Formula, which takes a string that has a prefix that represents a formula, and returns
a formula tree created from the prefix, and a string containing the unparsed remainder of
the string (which may be empty, if the parsed prefix is in fact the entire string).

propositions/syntax.py

class Formula:
...

@staticmethod
def _parse_prefix(string: str) -> Tuple[Optional[Formula], str]:

"""Parses a prefix of the given string into a formula.

Parameters:

Chapter 1 16 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

string: string to parse.

Returns:
A pair of the parsed formula and the unparsed suffix of the string.
If the given string has as a prefix a variable name (e.g.,
'x12') or a unary operator followed by a variable name, then the
parsed prefix will include that entire variable name (and not just a
part of it, such as 'x1'). If no prefix of the given string is a
valid standard string representation of a formula then returned pair
should be of ``None`` and an error message, where the error message
is a string with some human-readable content.

"""
Task 1.4

Example: Formula._parse_prefix('(p&q)') should return a pair whose first element
is a Formula object equivalent to Formula('&', Formula('p'), Formula('q')) and
whose second element is '' (the empty string), while Formula._parse_prefix('p3&q')
should return a pair whose first element is a Formula object equivalent to Formula('p3')
and whose second element is the string '&q', and Formula._parse_prefix('((p&q))')
should return the Python pair (None, 'Unexpected symbol)') (or some other error
message in the second entry). See the test function test_parse_prefix in the file
propositions/syntax_test.py for more examples (as we already remarked, it is always
a good idea to consult the test function for a task before starting to solve the task).

The fact that given a string, the code that you wrote is able to clearly decide, without
any ambiguity, on what exactly is the prefix of this string that constitutes a valid formula,
relies on the fact that indeed our syntactic rules ensure that no prefix of a formula is also a
formula itself (with the mentioned caveat that this holds as long as a variable name cannot
be broken down so that only its prefix is taken, since, e.g., ‘x1’ is a prefix of ‘x12’). Had
our definitions been different, e.g., had we allowed ‘φ&ψ’ as a formula as well, then this
would have no longer been true. For example, under such definitions, the string 'x&y'
would have been a valid formula, and so would have its prefix 'x'. The code behind your
implementation and the reasoning of why it solves the task in the unique correct way thus
essentially prove the following lemma:

Lemma (Prefix-Free Property of Formulas). No formula is a prefix of another formula,
except for the case of a variable name as a prefix of another variable name.

Since this is the first lemma in the book, let us take just a moment to consider how
this lemma would be proven in a “standard mathematical way.” The overall structure of
the proof would be by induction on the length of the formula (which we need to show has
no proper prefix that is also a formula). The proof would then proceed with a case-by-case
analysis of the first token of the formula. The significant parts of the proof would be the
ones that correspond to the inductive definitions, specifically to a formula starting with
a ‘(’. By definition, this formula must be parsed as ‘(φ∗ψ)’ (where ∗ is one of the three
allowed binary operators), and so must any supposed formula prefix of it (for perhaps some
other ‘(φ′∗′ψ′)’). We would then use the induction hypothesis claiming that neither φ nor
φ′ can be the prefix of the other if they are different, to show that φ = φ′, which then forces
∗ = ∗′, and then we can apply the induction hypothesis again to show that neither ψ nor
ψ′ can be the prefix of the other if they are different, to conclude the proof (of this case).5

5The “caveat case” of a variable name as a prefix of another variable name would come up when dealing
with formulas whose first token is a variable name (rather than with a ‘(’ as in the case detailed above).

Chapter 1 17 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

The structure of this proof is in direct correspondence to your parsing algorithm and its
justification: both the code and the proof have the same case-by-case analysis, only with
mathematical induction in the proof replacing recursion in the algorithm. Furthermore,
the reasoning for why you wrote your code the way you did—e.g., why your code can
safely rely on the values returned by the induction calls and can safely expect to find
certain tokens in certain places in the string—directly corresponds to the proof arguments.
We thus feel that if you were able to solve this task, then you have a full understand
of all the important mathematical elements of the proof—an understanding that possibly
misses only the formalistic wrapping, but has the advantage of being very concrete (and
executable!). In this book we will thus not provide formal mathematical proofs that just
repeat in a formal mathematical way conceptual steps taken in a programmatic solution
of a task.

Task 5. Implement the missing code for the static method is_formula(string) of class
Formula, which checks whether a given string represents a valid formula (according to the
definition above).

propositions/syntax.py

class Formula:
...

@staticmethod
def is_formula(string: str) -> bool:

"""Checks if the given string is a valid representation of a formula.

Parameters:
string: string to check.

Returns:
``True`` if the given string is a valid standard string
representation of a formula, ``False`` otherwise.

"""
Task 1.5

Hint: Use the _parse_prefix() method.

Task 6. Implement the missing code for the static method parse(string) of class
Formula, which parses a given string representation of a formula. (You may assume that
the input string is valid, i.e., satisfies the precondition Formula.is_formula(string), as
indicated by the assertion that we already added for you.)

propositions/syntax.py

class Formula:
...

@staticmethod
def parse(string: str) -> Formula:

"""Parses the given valid string representation into a formula.

Parameters:
string: string to parse.

Returns:
A formula whose standard string representation is the given string.

In this case, to get uniqueness we must indeed enforce that the entire variable-name token be part of the
parsed prefix.

Chapter 1 18 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

"""
assert Formula.is_formula(string)
Task 1.6

Hint: Use the _parse_prefix() method.

The reasoning and code that allowed you to implement Task 6 (and the preceding
Task 4) without any ambiguity essentially prove the following theorem:

Theorem (Unique Readability of Formulas). There is a unique derivation tree for every
valid propositional formula.

3 Infinite Sets of Formulas
Our programs, like all computer programs, only handle finite data. This book however
aims to teach Mathematical Logic and thus need also consider infinite objects. We shall
aim to make a clear distinction between objects that are mathematically finite (like a single
integer number6) and those that can mathematically be infinite (like a set of integers) but
practical representations in a computer program may limit them to be finite. So, looking at
the definition of formulas, we see that every formula has a finite length and thus formulas
are finite objects in principle. Now, there is no uniform upper bound on the possible
length of a formula (much like there is no uniform upper bound on the possible length of
an integer), which means that there are infinitely many formulas. In particular, a set of
formulas can in principle be an infinite object: it may contain a finite number of distinct
formulas or an infinite number of distinct (longer and longer) formulas, but each of these
formulas has only a finite length. Of course, when we actually represent sets of formulas
in our programs, the represented sets will always be only of finite size.

As some readers may recall, in Mathematics there can be different cardinalities of
infinite sets, where the “smallest” infinite sets are called countably infinite (or enumer-
able). An infinite set S is called countably infinite, or countable, if there exists a way
to list its items one after another without “forgetting” any of them: S = {s1, s2, s3, . . .}.
(Formally if there exists a function f from the natural numbers onto S.)7 The set of for-
mulas is indeed countable in this sense: each formula is a finite-length string whose letters
come from a finite number of characters, and thus there is a finite number of formulas of
any given fixed length. Thus one may first list all the formulas of length 1, then those of
length 2, etc. We thus get the following simple fact:

Theorem. The set of formulas is countably infinite.

While according to our definition of variable names and formulas there are only count-
ably manycountably infinite variable names and therefore only countably many formu-
las, all of the results in this book extend naturally via analogous proofs to sets of variable
names of arbitrary cardinality, which imply also formula sets of arbitrary cardinality. In
the few places throughout this book where the generalization is not straightforward, we
will explicitly discuss this.

6Indeed, while there is no upper bound on the length of an integer number, any given single integer
number is of finite length.

7For the benefit of readers who are not familiar with cardinalities of infinite sets, we note that while
when first encountering this definition it may be hard to think of any set that does not satisfy this property,
in fact many sets that you have encountered do not satisfy it. A prime example is the infinite set of all
real numbers between 0 and 1, which is not countable.

Chapter 1 19 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

A Optional Reading: Polish Notations
The notation that we used to represent our formulas is only one possible format, and
there are other notations by which a tree data-structure can be represented as a string.
The notation that we used is called infix notation since the operator at the root of
the tree is given in-between the representations of the left and right subtrees. Another
commonly used notation is polish notation.8 In this notation, the operator is printed
before the (two, in the case of a binary operator) subformulas that it operates on. Of
course, these subformulas themselves are recursively printed in the same way. In another
commonly used notation, reverse polish notation, the operator is printed after these
subformulas.9 One nice advantage of polish and reverse polish notations is that it turns
out that parentheses are no longer needed. Thus, for example, the formula whose regular,
infix, notation is ‘~(p&q76)’ would be represented in polish notation as ‘~&pq76’ and in
reverse polish notation as ‘pq76&~’.
Optional Task 7. Implement the missing code for the static method polish() of class
Formula, which returns a string that represents the formula in polish notation.

propositions/syntax.py

class Formula:
...

def polish(self) -> str:
"""Computes the polish notation representation of the current formula.

Returns:
The polish notation representation of the current formula.

"""
Optional Task 1.7

Example: For the formula my_formula defined in the example above,
my_formula.polish() should return the string '˜&pq76'. (Remember that there
are no parentheses in polish notation.) Once again, it is always a good idea to consult the
test function for more examples.

Parsing polish notation is usually a bit easier than parsing infix notation, even though
there are no parentheses.
Optional Task 8. Implement the missing code for the static method parse_polish(
string) of class Formula, which parses a given polish notation representation of a formula.
As in Task 6, you may assume (without checking) that the input string is valid.

propositions/syntax.py

class Formula:
...

@staticmethod
def parse_polish(string: str) -> Formula:

"""Parses the given polish notation representation into a formula.

8So called after the Polish logician Jan Lukasiewicz who invented it.
9Polish notation and reverse polish notations are also called prefix notation and postfix notation,

respectively, analogously to infix notation, describing where the operator comes with respect to the rep-
resentations of the subtrees. We avoid these terms here in order not to confuse prefix as the name of
the notation with prefix as the word describing the beginning of a string as in “prefix-free” or as in
_parse_prefix().

Chapter 1 20 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Parameters:
string: string to parse.

Returns:
A formula whose polish notation representation is the given string.

"""
Optional Task 1.8

Hint: First implement an analogue of Task 4 for polish notation.

Chapter 1 21 Draft; comments welcome

	1 Propositional Formulas
	2 Parsing
	3 Infinite Sets of Formulas
	A Optional Reading: Polish Notations

