This material will be published by Cambridge University Press as:
Mathematical Logic through Python by Yannai A. Gonczarowski and Noam Nisan

This pre-publication version is free to view and download for personal use only. Not for re-distribution,
re-sale or use in derivative works. Please link to: www.LogicThruPython.org
© Yannai A. Gonczarowski and Noam Nisan 2017-2021.

Chapter 2:

Propositional Logic Semantics

In the previous chapter we defined the syntax of propositional formulas, that is, we
defined which strings constitute valid propositional formulas. We were however careful
not to assign any meaning, any semantics, to propositional formulas. The notion of the
semantics of propositional formulas may be somewhat difficult to grasp, as the meaning
of formulas may seem “obvious” but its formal definition may at first seem elusive. This
chapter provides this formal definition.

Our intention for these semantics is as follows: every variable name (e.g., ‘p’ or ‘q76’)
will stand for a certain primitive proposition that may be either true or false, inde-
pendently of other primitive propositions. A compound formula that contains more than
one variable name will describe a more complex proposition, whose truth or lack thereof
depends on which primitive propositions are true and which are not. For example, we may
have ‘p’ represent “It is raining,” ‘q’ represent “My umbrella is open,” ‘v’ represent “I
am singing,” and ‘s’ represent “I am dancing.” A compound formula like ‘((p&~q)&(r|s))’
evaluates to true if it is raining and my umbrella is not open, and furthermore either I am
singing or I am dancing.

Before moving forward with the formal definition of the semantics of propositional
formulas, it may perhaps be instructive to take a short detour to another domain where
we have a distinction between syntax and semantics, a domain where we expect many of
our readers to have a good feel for semantics: programming languages.

1 Detour: Semantics of Programming Languages

Consider the following valid program:

#include <stdio.h> /*
print ("wonderland")
nmnn */

int main() { printf("looking-glass\n"); }
// nnn

What would this program output? Well, since in Python comments start with the
symbol # and continue until the end of the line, and multi-line strings (which are ignored
on their own) are enclosed between triple quotations, then graying out Python comments
and ignored strings, the above program would be interpreted as follows:

[mystery_program . py]

#include <stdio.h> /x

print ("wonderland")

nnn */

int main() { printf("looking-glass\n"); }
// nnn

23 Draft; comments welcome

www.LogicThruPython.org

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

and when executed would simply print wonderland. This answer, as we will now explain,
while partially correct, does make some assumptions. As it turns out, the proper answer to
the question of what would the above program print, is “it depends on which language you
consider this program to be written in.” Indeed, this program is not only a valid program
in Python, but also in the C programming language!® While the syntaz of the above
program is valid both in Python and in C, its semantics in each of these programming
languages turn out however to be completely different. In C, comments are either enclosed
between /* and */, or start with // and continue until the end of the line. Therefore,
as a C program, graying out C comments, the above program would be interpreted as
follows:

(B
| mystery_progran.c |

#include <stdio.h> /*

print ("wonderland")

nnn */

int main() { printf("looking-glass\n"); }
// nnn

and when compiled and executed, would simply print looking-glass.

So what is our point with this example? First, that the semantics are very important:
in the case of programming languages they determine what the program does. Second,
that even if usually a short glance suffices for you to “more-or-less understand” a piece of
code (or a formula), carefully defining the “right” semantics is still very important, and
may be tricky and not at all obvious. With this appreciation, let us return to propositional
formulas and proceed to assign semantics to them.

2 Models and Truth Values

Formally, the semantics we will give to a formula are the respective truth values that it
gets in every possible setting of its variable names. We view a possible setting of these
variable names as a “possible world,” and the semantics of a formula are whether it is true
or not in each of these possible worlds. We will call such a possible world a model:

Definition (Model). Let S be the set of variable names. A model M over S is a function
that assigns a truth value to every variable name in S. That is, M : S — { True, False}.

The file propositions/semantics.py, which contains all of the functions that you are
asked to implement in the next few sections, deals with the semantics of propositional
formulas. A formula is represented as an instance of the class Formula that was defined
in Chapter 1. We will represent a model as a Python dict (dictionary) that maps every
variable name name to a Boolean value:

e Iy ; N
/ kproposn:lons/semantlcs.py) \

#: A model for propositional-logic formulas, a mapping from variable names to
#: truth values.
Model = Mapping[str, booll

def is_model (model: Model) -> bool:
"""Checks if the given dictionary is a model over some set of variable
names.

!Fear not if you have no familiarity with the C programming language. We will explain the little that
is needed to know about C in order to drive the point of this discussion home.

Chapter 2 24 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Parameters:
model: dictionary to check.

Returns:
“"True™ "~ if the given dictionary is a model over some set of variable
names, = ~False ~ otherwise.

for key in model:
if not is_variable(key):
return False
return True

def variables(model: Model) -> AbstractSet[str]:
"""Finds all variable names over which the given model is defined.

Parameters:
model: model to check.

Returns:
A set of all variable names over which the given model is defined.
nnn
assert is_model (model)
return model.keys ()

- /

Having defined a model, we can now give each formula its semantics—the truth value
that it gets in every possible model:

Definition (Truth Value of Formula in Model). Given a formula ¢ and a model M over
a set of variable names that contains (at least) all those used in ¢, we define the (truth)
value of the formula ¢ in the model M recursively in the natural way:

o If ¢ is the constant ‘T’, its value is True; if ¢ is the constant ‘F’) its value is False.
 If ¢ is a variable name p, then its value is as specified by the model: M(p).

o If ¢ is of the form ‘~¢’; then its value is True if the (recursively defined) value of 1
in M is False (and is False otherwise).

o If ¢ is of the form ‘(&¢)’, then its value is True if the (recursively defined) values of
both ¢ and £ in M are True (and is False otherwise); if ¢ is of the form ‘(¢)|£)’, then
its value is True if the (recursively defined) value of either ¢ or & (or both) in M is
True (and is False otherwise); if ¢ is of the form ‘(¢¥»—&)’, then its value is True if
either the (recursively defined) value of ¢ in M is False or the (recursively defined)
value of £ in M is True (and is False otherwise).

Returning to the example we started with, one possible model M is M(‘p’) = True (it
is raining), M(‘q’) = False (my umbrella is NOT open), M (‘") = True (I am singing), and
M(‘s’) = False (I am NOT dancing), and in this model the formula ‘((p&~q)&(r|s))’ eval-
uates to the value True as defined recursively: ‘~q’ evaluates to True (since ‘q’ evaluates to
False), and so ‘(p&~q)’ evaluates to True (since both ‘p” and ‘~q’ evaluate to True); fur-
thermore, ‘(r|s)” evaluates to True (since ‘r’ evaluates to True); and finally ‘((p&~q)&(r|s))’
evaluates to True (since both ‘(p&~q)” and ‘(r|s)” evaluate to True). Of course there are
more possible models, and for some of them the formula evaluates to True while for the
others it evaluates to False.

Chapter 2 25 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

While the semantics of the not (‘*~'), or (‘'), and and (‘&’) operators are quite natural
and self explanatory, the implies (‘—’) operator may seem a bit more cryptic. The way to
think about ‘(¢¥—¢&)’ is as stating that if ¢ is True, then & is True as well. This statement
would be False only if both ¢ were False and & were True, so this statement is True
whenever either ¢ is True or & is False, which coincides with the above definition. Yet, it
may still intuitively seem unnatural that the statement “if ¢ is True, then £ is True as well”
is considered to be True if ¢ is False (indeed, how should one interpret this conditional if ¢
is false)? The reason for this definition is that we would generally be interested in whether
a given formula is True in each of a set of models. In this context, the formula ‘(¢)—¢)’
can be naturally interpreted as “whenever ¢ is True, so is £”, that is, in any model in this
set in which ¢ is True, so is . (This of course still does not tell us anything about models
in this set in which ¢ is False, but replacing “if” with “whenever” may somewhat further
motivate this definition, and help make this operator a bit less cryptic.)

Task 1. Implement the missing code for the function evaluate (formula, model), which
returns the truth value of the given formula in the given model.

e Iy ; N
/ kproposn:lons/semantlcs.py) \

def evaluate(formula: Formula, model: Model) —> bool:
"""Calculates the truth value of the given formula in the given model.

Parameters:
formula: formula to calculate the truth value of.
model: model over (possibly a superset of) the variable names of the
given formula, to calculate the truth value in.

Returns:
The truth value of the given formula in the given model.

Examples:
>>> evaluate(Formula.parse('~(p&q76)'), {'p': True, 'q76': Falsel})
True

>>> evaluate(Formula.parse('~(p&q76)'), {'p': True, 'q76': Truel})
False

nnn

assert is_model (model)

assert formula.variables().issubset(variables(model))

K # Task 2.1 J

3 Truth Tables

Once we have defined the value that a formula gets in a given model, we now turn to
handling sets of possible models. If we have a set of n variable names, then there are
exactly 2" possible models over this set: all possible combinations where each of the
variable names is mapped to either True or False. In the next task we ask you to list
all these possible models.

Before jumping to the task, we should explicitly note the exponential jump in the size
of the objects that we are dealing with. While all the code that you have written so far
would have no problem dealing with formulas with millions of variable names, once we
want to list all the possible models over a given set of variable names, we will not be able

Chapter 2 26 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

to handle more than a few dozen variable names at most: already with 40 variable names
we have more than a trillion models (240 ~ 10'?).

Task 2. Implement the missing code for the function all models(variables), which
returns a list? of all possible models over the given variable names.

(ti ; B
/ Kproposnlons/semantlcs.pyJ ~

def all_models(variables: Sequencel[str]) -> Iterable[Model]:
"""Calculates all possible models over the given variable names.

Parameters:
variables: variable names over which to calculate the models.

Returns:
An iterable over all possible models over the given variable names. The
order of the models is lexicographic according to the order of the given
variable names, where False precedes True.

Examples:
>>> list(all_models(['p', 'q'l))
[{'p': False, 'q': False}, {'p': False, 'q': True},
{'p': True, 'q': False}, {'p': True, 'q': True}]

>>> list(all_models(['q', 'p'l1))
[{'q': False, 'p': False}, {'q': False, 'p': Truel,
{'q': True, 'p': False}, {'q': True, 'p': True}]

for v in variables:
assert is_variable(v)

K # Task 2.2 J

Guidelines: The standard term “lexicographic order” that specifies the order of the mod-
els refers to considering each model as a “word” in the alphabet consisting of the two
“letters” False and True, considering the “letter” False to precede the “letter” True, and
listing all the “words” (models) “alphabetically” in the sense that every word that starts
with False precedes every word that starts with True, and more generally for any prefix
of a “word,” words that start with that prefix and then False (regardless of which “let-
ters” follow) precede words that start with that prefix and then True (regardless of which
“letters” follow).

Hint: The product method (with its repeat argument) from the standard Python
itertools module may be useful here.

Task 3. Implement the missing code for the function truth_values(formula, models),
which returns a list of the respective truth values of the given formula in the given models.?

2While in this book we will not pay much attention to complexities and running times, we do pay here
just a bit of attention to this first exponential blowup. Even though for simplicity the task asks to return
a list, we recommend that readers familiar with Python iterables return an iterable that iterates over
all possible models (which does not require keeping them all together in memory) rather than actually
return a list of all possible models (which would require them to all be together in memory). The test
that we provide allows for any iterable, and not merely a 1ist, to be returned by this function. We do
not, however, intend to run any of this code on more than a few variable names, so we do not impose any
efficiency requirements on your code, and we do allow solving this task by returning a 1ist of all models.

3Readers who implemented Task 2 to return a memory-efficient iterable rather than a list are en-
couraged to implement this method to accept models also as an arbitrary iterable, and to also return a
memory-efficient iterable rather than a 1list from this function. The test that we provide allows for any
iterable to be returned by this function, but only requires the function to support taking a 1ist of models.

Chapter 2 27 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

/ [proposit ions/semantics. py]

\

def truth_values(formula: Formula, models: Iterable[Model]) -> Iterable[bool]:
"""Calculates the truth value of the given formula in each of the given
models.

Parameters:
formula: formula to calculate the truth value of.
models: iterable over models to calculate the truth value in.

Returns:

An iterable over the respective truth values of the given formula in
each of the given models, in the order of the given models.

Examples:
>>> list(truth_values(Formula.parse('~ (p&q76)"'),

. all_models(['p', 'q76'1)))
[True, True, True, False]

_ # Task 2.3

)

We are now able to print the full semantics of a formula: its truth value for every
possible model over its variable names. There is a standard way to print this information,
called a truth table: a table with a line for each possible model, where this line lists each
of the truth values of the variable names in the model, and then the truth value of the
formula in the model.

Task 4. Implement the missing code for the function print_truth_table(formula),
which prints the truth table of the given formula (according to the format demonstrated
in the docstring of this function).

Ve [propositions/semantics.py] ~
def print_truth_table(formula: Formula) -> None:
"""Prints the truth table of the given formula, with variable-name columns
sorted alphabetically.
Parameters:
formula: formula to print the truth table of.
Examples:
>>> print_truth_table(Formula.parse('~ (p&q76)'))
| p | q76 | ~(p&q76) |
Jo==]|om=== |o=momeeee= I
| F | F | T |
| F I T | T |
| TIF |T |
l TIT |F |
_ # Task 2.4 Y,

4 Tautologies, Contradictions, and Satisfiability

We are going to pay special attention to two types of formulas—those that get the value
True in some model, and those that get the value True in all models:

Chapter 2 28 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Definition (Satisfiable Formula; Contradiction; Tautology).

« A formula is said to be satisfiable if it gets the value True in some (at least one)
model. A formula that is not satisfiable is said to be a contradiction.

o A formula is said to be a tautology if it gets the value True in all models over its
variable names.

For example, the formula ‘(p&~p)’ is a contradiction (why?) and thus is not satisfiable
and is certainly not a tautology, while ‘(p|~p)’ is a tautology (why?) and in particular
is also satisfiable. The formula ‘(p&q)’ is neither a contradiction nor a tautology, but is
satisfiable (why?). Note that a formula ¢ is a contradiction if and only if ‘~¢’ is a tautology,
and thus a formula ¢ is satisfiable if and only if its negation ‘~¢’ is not a tautology. One
may figure out whether a given formula satisfies each of these conditions by going over all
possible models.

Task 5. Implement the missing code for the three functions is_tautology(formula),
is_contradiction(formula), and is_satisfiable(formula), which respectively return
whether the given formula is a tautology, is a contradiction, and is satisfiable.

e I : 3\
/ Kproposﬂ:lons/semantlcs.pyJ \

def is_tautology(formula: Formula) -> bool:
"""Checks if the given formula is a tautology.

Parameters:
formula: formula to check.

Returns:
“"True™~ if the given formula is a tautology, ~“False ~ otherwise.

Task 2.ba

def is_contradiction(formula: Formula) -> bool:
"""Checks if the given formula is a contradiction.

Parameters:
formula: formula to check.

Returns:
“"True™ "~ if the given formula is a contradiction, "~ “False "~ otherwise.

Task 2.5Db

def is_satisfiable(formula: Formula) -> bool:
"""Checks if the given formula is satisfiable.

Parameters:
formula: formula to check.

Returns:
T True”

if the given formula is satisfiable, "“False ~ otherwise.

_ # Task 2.5c)

Examples: If f is the formula that represents ‘~(p&q76)’, then is_tautology (f) should
return False, is_contradiction(f) should return False, and is_satisfiable(f)

Chapter 2 29 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

should return True. If g is the formula that represents ‘(x|~x)’, then is_tautology(g)
should return True, is_contradiction(g) should return False, and is_satisfiable(g)
should return True.

Hint: Once you implement one of these functions by going over all possible models, it
should be easy to use it to implement the other two.

5 Synthesis of Formulas

All of the tasks so far accepted a formula as their input, and answered questions about
its truth value in a given model or in some set of models. In the next two tasks you are
asked to implement the “reversed” functionality: to take as input desired semantics, and
output—synthesize—a formula that conforms to it. Remarkably, this can be done for any
desired semantics.

Our first step will be to create a formula whose truth table has a single row with
value True, with all other rows having value Fualse. This can be done in the form of a
conjunctive clause: a conjunction (i.e., a concatenation using ‘&’ operators) of (one or
more) variable names or negation-of-variable-names.

Task 6. Implement the missing code for the function _synthesize_for_model (model),
which returns a propositional formula in the form of a conjunctive clause that is True for
the given model and False for every other model over the same variable names.

(i ; B
Ve kprop051t10ns/semant1cs.pyJ ~

def _synthesize_for_model(model: Model) -> Formula:
"""Synthesizes a propositional formula in the form of a single conjunctive
clause that evaluates to "~"True ~ in the given model, and to ~“False ~ in
any other model over the same variable names.

Parameters:
model: model over a nonempty set of variable names, in which the
synthesized formula is to hold.

Returns:
The synthesized formula.

assert is_model (model)
assert len(model.keys()) > O

_ # Task 2.6 Y

Your solution to Task 6 (programmatically) proves the following lemma:

Lemma. Let M : S — { True, False} be a model over some nonempty finite set of variable
names S. There exists a formula in the form of a conjunctive clause that evaluates to True
in M and to False in all other models over S.

If we want to create a formula that has some arbitrary given truth table, that is, that
has value True for all models in some arbitrary set of models and Fulse for any other
model, then we can easily just take a disjunction (i.e., a concatenation using ‘| operators)
of the conjunctive clauses that the above lemma guarantees for each of the models in the
set. This would give us a formula in the form called Disjunctive Normal Form (DNF):
a disjunction of (one or more) conjunctive clauses.

Chapter 2 30 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Task 7 (Programmatic Proof of the DNF Theorem). Implement the missing code for the
function synthesize(variables, values), which constructs a propositional formula in
DNF from the given description of its truth table.?

e "y ; N
/ Kprop051tlons/semantlcs.pyJ \

def synthesize(variables: Sequence[str], values: Iterable[bool]) -> Formula:
"""Synthesizes a propositional formula in DNF over the given variable names,
that has the specified truth table.

Parameters:
variables: nonempty set of variable names for the synthesized formula.
values: iterable over truth values for the synthesized formula in every
possible model over the given variable names, in the order returned
by ~all_models(variables) .

Returns:
The synthesized formula.

Examples:
>>> formula = synthesize(['p', 'q'l, [True, True, True, False])
>>> for model in all_models(['p', 'q'l):
. evaluate (formula, model)
True
True
True
False
nnn
assert len(variables) > 0
_ # Task 2.7)

Hints: Use the function _synthesize for_model that you implemented in Task 6. Note
that the case in which the set of models with value True is empty is a special case since we
are not allowing to simply return the formula ‘F’; so you will need to return an equivalent
DNF of your choice (over the given variable names).

The fact that you were able to complete Task 7 proves the following rather remarkable
theorem:

Theorem (The DNF Theorem). Let S be a nonempty finite set of variable names. For
every Boolean function f over the variable names in S (i.e., f arbitrarily assigns a truth
value to every tuple of truth values for the variable names in S) there exists a formula in
Disjunctive Normal Form whose truth table is exactly the Boolean function f.

A Optional Reading: Conjunctive Normal Form

In this section we will consider an alternative approach to synthesizing formulas. While
this approach is a precise dual to the one used above, it may be slightly more challenging
conceptually. Our first step will be to create a formula whose truth table has all rows
except one having value True, with the remaining row having value False. This can be
done in the form of a disjunctive clause: a disjunction of (one or more) variable names
or negation-of-variable-names.

4Once again, readers who implemented Task 3 to return a memory-efficient iterable rather than a list
are encouraged to implement this method to also accept values as an arbitrary iterable.

Chapter 2 31 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Optional Task 8. Implement the missing code for the function
_synthesize for_all except_model(model), which returns a propositional for-
mula in the form of a disjunctive clause that is Fulse for the given model and True for
every other model over the same variable names.

e "y ; N
/ Kproposﬂ:lons/semantlcs.pyJ \

def _synthesize_for_all_except_model (model: Model) -> Formula:
"""Synthesizes a propositional formula in the form of a single disjunctive

clause that evaluates to ~“False ™~ in the given model, and to "~ “True in
any other model over the same variable names.

Parameters:
model: model over a nonempty set of variable names, in which the
synthesized formula is to not hold.

Returns:

The synthesized formula.
assert is_model (model)
assert len(model.keys()) > O
Optional Task 2.8

=)

Analogously to the lemma proven by your solution to Task 6, your solution to Optional
Task 8 proves the following lemma:

Lemma. Let M : S — { True, False} be a model over some nonempty finite set of variable
names S. There exists a formula in the form of a disjunctive clause that evaluates to False
in M and to True in all other models over S.

If we want to create a formula that has some arbitrary given truth table, that is,
that has value True for all models in some arbitrary set of models and Fualse for any
other model, then we can just take a conjunction of the disjunctive clauses that the above
lemma guarantees for each of the models not (!) in the set. This would give us a formula
in the form called Conjunctive Normal Form (CNF): a conjunction of (one or more)
disjunctive clauses.

Optional Task 9 (Programmatic Proof of the CNF Theorem). Implement the missing
code for the function synthesize_cnf (variables, values), which constructs a propo-
sitional formula in CNF from the given description of its truth table.’

e I : 3\
/ Kpropos1t10ns/semant1cs.pyJ \

def synthesize_cnf(variables: Sequencel[str], values: Iterable[bool]) -> Formula:
"""Synthesizes a propositional formula in CNF over the given variable names,
that has the specified truth table.

Parameters:
variables: nonempty set of variable names for the synthesized formula.
values: iterable over truth values for the synthesized formula in every
possible model over the given variable names, in the order returned
by “all_models(variables) .

Returns:
The synthesized formula.

5Once again, readers who implemented Task 3 to return a memory-efficient iterable rather than a list
are encouraged to implement this method to also accept values as an arbitrary iterable.

Chapter 2 32 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Examples:
>>> formula = synthesize_cnf(['p', 'q']l, [True, True, True, False])
>>> for model in all_models(['p', 'q'l):
. evaluate (formula, model)
True
True
True
False
nnn
assert len(variables) > 0
Optional Task 2.9

o J
Hints: Use the function _synthesize for_all_except_model that you implemented in
Optional Task 8. Note that the case in which the set of models with value False is empty
is a special case since we are not allowing to simply return the formula ‘T’, so you will
need to return an equivalent CNF of your choice (over the given variable names).

The fact that you were able to complete Optional Task 9 proves the following theorem,
which is as remarkable as the DNF Theorem:

Theorem (The CNF Theorem). Let S be a nonempty finite set of variable names. For
every Boolean function f over the variable names in S (i.e., f arbitrarily assigns a truth
value to every tuple of truth values for the variable names in S) there exists a formula in
Conjunctive Normal Form whose truth table is exactly the Boolean function f.

Attentive readers would notice the duality between constructing a DNF formula and
a CNF formula. Given a model, _synthesize for_model all_except_model() returns
a disjunctive clause with the exact same structure—only with each variable name replaced
by its negation and vice versa (and with and operators replaced by or operators)—as
the conjunctive clause returned by _syntehsize for_model() for the same model. More
generally, given a truth table, _synthesize_cnf () returns a CNF formula with the exact
same structure—only with each variable name replaced by its negation and vice versa
(and with and operators replaced with or operators and vice versa)—as the DNF formula
returned by _syntehsize() for the negation of that truth table. The reason for this is in
fact quite simple: these invocations create formulas that are negations of one another, and
by De Morgan’s laws, the negation of a DNF or CNF formula is a formula with the exact
same structure, only with and operators replaced with or operators and vice versa, and
with each variable name replaced by its negation and vice versa.

B Optional Reading: Satisfiability and Search prob-
lems

As noted above, in this book we will mostly ignore questions of computational complexity,
i.e., of the running time of the algorithms that we use, and usually focus only on correct-
ness, which is what guarantees the validity of the corresponding proofs. However, since
handling truth values of propositional formulas turns out to be a central issue of study in
computational complexity theory, we will now shortly discuss these computational com-
plexity aspects.

Looking at the various tasks of this chapter, one may observe that there are
two very different levels of running times involved. Tasks that deal with a sin-
gle model, like evaluate(formula, model) or _synthesize_for_model(model) (or

Chapter 2 33 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

_synthesize_for_all_except_model(model)), can easily be solved very efficiently and
your solution should easily work for formulas with thousands or even millions of vari-
able names. On the other hand, as we have noted, tasks that deal with all models of a
given formula, like print_truth_table(formula) or synthesize(models, values) (or
synthesize_cnf (models, values)), have inputs or outputs whose size is exponential in
the number of variable names used in the formula. Thus, it is certain that there is no hope
that any solution of any of these latter tasks could operate on formulas that have more
than a few dozen variable names, as otherwise the input and/or output would not be able
to fit into your computer’s memory.

The most interesting tasks to study from the point of view of their computational
complexity, though, are rather tasks such as implementing is_tautology(formula) or
is_satisfiable(formula), whose inputs and outputs don’t explicitly involve the set of
all models and yet the natural algorithm for solving them is precisely to go over all possible
models (as your solution does). In these cases the natural algorithm that goes over all
models will take an exponential amount of time and thus this algorithm would not be
able to handle formulas with more than a few dozen variable names. Are there other
algorithms for determining whether a given formula is satisfiable (or equivalently, whether
a given formula is tautology®) that are more efficient than simply trying each and every
possible model? It is true that for some special classes of formulas, there exists such an
algorithm. For example, efficiently checking whether a DNF formula is satisfiable turns
out to be possible and even quite easy” (and dually, so does checking whether a CNF
formula is a tautology®). Furthermore, much effort was spent on the problem of efficiently
finding a satisfying assignment to a formula, mostly using clever backtracking techniques,
and there are programs that, heuristically, work rather well on formulas encountered when
translating some real-world challenges into satisfiability of propositional formulas. But does
there exist an algorithm that is guaranteed to efficiently find a satisfying solution if such
exists? While this may seem to be a rather specific algorithmic question that may interest
few people who are not logicians, it turns out that quite the opposite is true. In fact, the
far-reaching implications of this problem cannot be overstated, since an immense variety
of computational problems can be converted into a question of whether some propositional
formula is satisfiable or not.

A paradigmatic example of such a “conversion” is that of computational search
problems. A typical such computational problem asks to find some kind of entity x that
satisfies a certain set of given properties. To solve such a task, an algorithm may encode
the required x as a sequence of bits x1,...,x, and encode the required properties as a
propositional formula over these variable names such that a satisfying assignment encodes
the desired solution. To make this concrete, let’s take as an example the Graph Coloring
Problem: given a graph, find a graph coloring of the vertices of the graph, using at
most k colors, such that no two vertices connected by an edge are colored by the same.

6We write “equivalently” since a formula is satisfiable if and only if its negation is not a tautology.
This immediately tells us that the existence of an efficient algorithm for checking whether a formula is a
tautology would be equivalent (and as hard to find, if one exists) to the existence of an efficient algorithm
for satisfiability, since an algorithm for any one of these problems could easily be converted to an algorithm
for the other problem by checking the negation of the input formula.

"Indeed, it is not hard to verify that a DNF formula is NOT satisfiable if and only if every one of its
clauses is NOT satisfiable, which in turn occurs if and only if every one of its clauses contains both a
variable name and its own negation.

8Indeed, dually to checking the satisfiability of a DNF formula, it is not hard to verify that a CNF
formula is a tautology if and only if every one of its clauses is a tautology, which in turn occurs if and only
if every one of its clauses contains both a variable name and its own negation.

Chapter 2 34 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

The file propositions/reductions.py, which contains all of the functions that you are
asked to implement in this section, already contains the definition of how we will represent

graphs in Python in this section:

// [propositions/reductions.py]

#: A graph on a vertex set of the form (1,..., n_vertices™), represented by the
#: number of vertices "n_vertices® and a set of edges over the vertices.
Graph = Tuplelint, AbstractSet[Tuplel[int, int]]]

def is_graph(graph: Graph) -> bool:
"""Checks if the given data structure is a valid representation of a graph.

Parameters:
graph: data structure to check.

Returns:
“"True” "~ if the given data structure is a valid representation of a
graph, ~“False " otherwise.

nnn

(n_vertices, edges) = graph

for edge in edges:
for vertex in edge:

if not 1 <= vertex <= n_vertices:
return False
if edge[0] == edgel1]:
return False

_ return True

~

/

This file also contains the function is_valid_3coloring(graph, coloring), which we
have already implemented for you and which verifies that the given coloring is a valid

coloring of the given graph:

// [propositions/reductions.py]

def is_valid_3coloring(graph: Graph, coloring: Mapping[int, int]) -> bool:
"""Checks whether the given coloring is a valid coloring of the given graph
by the colors 1, 2, and 3.

Parameters:
graph: graph to check.
coloring: mapping from the vertices of the given graph to colors, to

check.
Returns:
“"True” "~ if the given coloring is a valid coloring of the given graph by
the colors 1, 2, and 3; "~ “False ~ otherwise.

assert is_graph(graph)
(n_vertices, edges) = graph
for vertex in range(l, n_vertices + 1):
if vertex not in coloring.keys() or coloring[vertex] not in {1, 2, 3}:
return False
for edge in edges:
if coloringledge[0]] == coloringl[edge[1]]:
return False

_ return True

~

)

A coloring of the graph can be encoded by having, for every vertex v and possible

Chapter 2 35 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

color ¢, a Boolean variable x,. that represents that vertex v is colored by color ¢, and then
the constraints that state that an assignment of values to the variables names—a model—
represents a valid coloring of the graph can be expressed as whether a certain propositional
formula over these variable names is satisfied by this model.

Optional Task 10. Implement the missing code for the two functions
graph3coloring to_formula(graph) and assignment_to_3coloring(graph,
assignment). The former function returns a propositional formula that “encodes”
the 3-coloring problem of the given graph in the sense that it is satisfiable if and only if
that graph is colorable by at most three colors. Moreover, we require that any satisfying
assignment to the generated formula can actually be converted into a 3-coloring of
the graph, which the latter function accomplishes. Your implementation should be
computationally efficient in the sense that each of these functions should be able to easily
handle graphs with hundreds or even thousands of vertices.

(ki ; B
Ve kproposrclons/reductlons.py) ~

def graph3coloring to_formula(graph: Graph) -> Formula:
"""Efficiently reduces the 3-coloring problem of the given graph into a
satisfiability problem.

Parameters:
graph: graph whose 3-coloring problem to reduce.

Returns:
A propositional formula that is satisfiable if and only if the given
graph is 3-colorable.

nnn

assert is_graph(graph)

Optional Task 2.10a

def assignment_to_3coloring(graph: Graph, assignment: Model) -> \
Mapping[int, int]:
"""Efficiently transforms an assignment to the formula corresponding to the
3-coloring problem of the given graph, to a 3-coloring of the given graph so
that the 3-coloring is valid if and only if the given assignment is
satisfying.

Parameters:
graph: graph to produce a 3-coloring for.
assignment: assignment to the variable names of the formula returned by
“graph3coloring_ to_formula(graph) ™.

Returns:
A 3-coloring of the given graph by the colors 1, 2, and 3 that is valid
if and only if the given assignment satisfies the formula
“graph3coloring_to_formula(graph) .

assert is_graph(graph)

formula = graph3coloring_to_formula(graph)

assert evaluate(formula, assignment)

Optional Task 2.10b

=)

Once the above two functions are implemented, we get an algorithm for 3-coloring a
graph:

Chapter 2 36 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

e s ; N
/ Kproposﬂ:lons/reductlons.py) \

def tricolor_graph(graph: Graph) -> Union[Mapping[int, int], None]:
"""Computes a 3-coloring of the given graph.

Parameters:
graph: graph to 3-color.

Returns:
An arbitrary 3-coloring of the given graph if it is 3-colorable,
““None™ " otherwise.
nnn
assert is_graph(graph)
formula = graph3coloring_to_formula(graph)
for assignment in all_models(list(formula.variables())):
if evaluate(formula, assignment):
return assignment_to_3coloring(graph, assignment)
_ return None Y

Your solution to Optional Task 10 was required to be computationally efficient;® it
is probably able to easily handle graphs with thousands of vertices and formulas with
thousands of variable names. The only efficiency bottleneck in the above algorithm for
coloring a graph is in the main loop of the function tricolor_graph(graph):

for assignment in all models(list(formula.variables())):

There are exponentially many possible models and this directly means that once the num-
ber of variable names is more than a few dozen, this algorithm becomes impractical. But,
an efficient algorithm for finding a satisfying assignment (if such exists) to a formula could
immediately be used to replace this loop and yield an efficient algorithm for graph coloring.
As it turns out, not only can the coloring problem be efficiently converted—reduced—
to the formula satisfiability problem, but so can also an immense gamut of other diverse
and seemingly unrelated problems. In fact, Cook’s Theorem, a central result in the field
of Computational Complexity, states that any computational search problem can be
efficiently reduced to finding a satisfying assignment to a propositional formula. This class
of problems includes most computational tasks of interest including, e.g., the traveling
salesmen problem, breaking any cryptographic code, solving arbitrary sets of equations,
automatically proving theorems, finding bugs in programs, and much more. An enormous
amount of effort has gone into trying to find efficient algorithms for many of these prob-
lems, all in vain. Since an efficient algorithm for satisfiability would, in one fell swoop,
provide efficient algorithms for all of these, the existence of one seems rather unlikely.

In the notation of computational complexity, the class of efficiently solvable problems
(formally, those that have a polynomial-time algorithm) is called P, and the class of com-
putational search problems is called NP. The fact that any problem in NP can be reduced
to a satisfiability problem is stated as satisfiability being NP-complete. So, an efficient
algorithm for determining whether a given formula is satisfiable exists if and only if every
problem in NP also has an efficient algorithm, i.e., if and only if “P = NP”. The question
of whether “P = NP ?” is arguably considered to be the main open problem in Computer
Science, and as mentioned above the general belief is that the answer is negative, i.e., that
satisfiability does not have an efficient algorithm.

Recall that we said earlier that efficiently checking whether a DNF formula is satisfiable
(or dually, whether a CNF formula is a tautology) is in fact easy. Supposedly, one could

90ur test for this task takes a while to run, though, since the test—not the task—enumerates over all
possible models to check the solution.

Chapter 2 37 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

have then proposed the following algorithm for satisfiability of an arbitrary formula: first
convert the formula to an equivalent formula (i.e., with the same truth table) in DNF, and
then efficiently check whether that formula is satisfiable. The problem here is that we know
of no efficient way of converting a formula into DNF (or into CNF). We do know, however,
given an arbitrary formula ¢, to efficiently construct a formula ¢’ in CNF such that while
these two formulas may not be equivalent, it does hold that ¢’ is satisfiable if and only if
¢ is, and furthermore, given a satisfying assignment for ¢', it is easy to efficiently find a
satisfying assignment for ¢. This of course immediately implies that satisfiability continues
to be as difficult even when we restrict the input formula to be in CNF.!°

In fact, for a similar reason, satisfiability continues to be as difficult even
when restricting to 3-CNF: the special case of CNF where each clause is a
disjunction of at most three variables names or negation-of-variable-names, e.g.,
“(((((pla)[~1)&(~p|~s))&((qs)|~1))&t)’.*! The significance of this fact is that it gives us a
general way for proving that other computational search problems are NP-complete: 3-
CNF formulas intuitively are easier to reason about than general formulas, and this helped
computer scientists to show over the years that the question of whether a 3-CNF formula
is satisfiable can be reduced into a variety of computational search problems (i.e., to show
that an efficient algorithm for any of a variety of computation search problems could be
used to construct an efficient algorithm for satisfiability). Exhibiting such a reduction for
some computational search problem () implies that the problem (@ itself is NP-complete,
and thus cannot be solved efficiently unless P = NP. Thousands of problems have been
proven to be NP-complete this way, including many optimization problems, for example
the traveling salesman problem, the knapsack problem, and many other problems including
even the 3-coloring problem discussed above.'? So, finding an efficient algorithm for the
seemingly innocent task of 3-coloring a graph would immediately give an efficient algorithm
for any NP-complete problem, including breaking any cryptographic code!

10Recall however that for formulas in CNF it is easy to tell whether they are tautologies: the only way
that a CNF formula may be a tautology is is if each of its clauses contains some of variable name and its
own negation. The special form that retains the hardness of the tautology problem is the dual DNF. This
duality is an implication (why?) of the above-discussed connection between the problems of satisfiability
and checking whether a given formula is a tautology.

1 And dually, of course, for the above reasons (why?), tautology continues to be as difficult even when
restricting to 3-DNF: the special case of DNF where each clause is a conjunction of at most three variable
names or negation-of-variable-names.

I2We emphasize that this reduction is in the opposite direction to the reduction shown in Optional
Task 10 above, which is from the 3-coloring problem to satisfiability: there we used an algorithm for
satisfiability to construct an algorithm for 3-coloring a graph.

Chapter 2 38 Draft; comments welcome

	1 Detour: Semantics of Programming Languages
	2 Models and Truth Values
	3 Truth Tables
	4 Tautologies, Contradictions, and Satisfiability
	5 Synthesis of Formulas
	A Optional Reading: Conjunctive Normal Form
	B Optional Reading: Satisfiability and Search problems

