
DRAFT

This material will be published by Cambridge University Press as:
Mathematical Logic through Python by Yannai A. Gonczarowski and Noam Nisan

This pre-publication version is free to view and download for personal use only. Not for re-distribution,
re-sale or use in derivative works. Please link to: www.LogicThruPython.org

© Yannai A. Gonczarowski and Noam Nisan 2017–2021.

Chapter 3:

Logical Operators

Our formulas so far have used a fixed set of logical operators: three binary operators,
‘|’, ‘&’, and ‘→’, a single unary operator, ‘~’, and two constants, ‘T’ and ‘F’, which can be
viewed as nullary operators (operators that take zero operands—see below), and to which
we will indeed refer as operators in this chapter. In this chapter we take a wider point of
view of the allowed set of operators. This wider view has two aspects: on the one hand we
may want to gain richness by adding more operators, and on the other hand, for the sake
of minimalism and succinctness we may want to remove operators. We will explore both
options, but the bottom line of this chapter will be that this does not matter much and
any “reasonable” set of operators will basically give rise to the “same kind” of logic. We
will thus be confident that there is no loss of generality in continuing to stick with the set
of operators that we have originally chosen.

1 More Operators

Abstractly speaking, an n-ary operator, i.e., an operator that takes n operands—where n
is called the arity of the operator—is simply a function from n-tuples of Boolean values
to a Boolean value. Since there are 2n different n-tuples of Boolean values and since each
of them can get mapped to one of the two possible Boolean values, the total number of
n-ary operators is 22n .

Let us start by considering n = 0: nullary operators. There are two of these: one that
maps the 0-length-tuple to True and the other that maps it to False. These two nullary
operators are already in our language: ‘T’ and ‘F’. Let us move to considering n = 1:
unary operators. There are four of these. Two of them completely disregard their input
and always output the same value: one of them always outputs True and the other always
outputs False. In this sense they are equivalent to the nullary operators ‘T’ and ‘F’. A
third operator is the identity operator that maps True to True and False to False, so we
require no notation for it. Only the fourth unary operator is interesting: it maps True to
False and False to True, i.e., it is none other than our beloved negation operator ‘~’.

We finally get some interesting new operators when considering n = 2: binary operators.
Indeed, there are 16 possible binary operators, including the binary operators that we
already met: | (or), & (and), and → (implies).1 We will now give names and assign
symbols to four of the new ones among these:

1Similarly to what we observed with unary operators, eight of these 16 possible binary operators are no
more than unary (or nullary) operators in disguise: two such operators disregard their input and always
output the same value and correspond to the nullary operators; another two simply output one of the
inputs (one always outputs its first input, the always other outputs its second input), disregarding the
other input—these correspond to the identity operator; and another two simply output the negation of
one of the inputs, disregarding the other—these correspond to the negation operator.

39 Draft; comments welcome

www.LogicThruPython.org

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

• ‘⊕’ (xor, short for exclusive or): True whenever exactly one of its two operands is
True and the other is False.

• ‘↔’ (iff , short for if and only if): True whenever either both operands are True or
both are False. (This operator is sometimes also called double implication.)

• ‘&’, (nand, short for not and): negation of the conjunction (“and”) of its two
operands. (This operator is sometimes also called the Sheffer stroke and denoted
by ‘↑’ or, confusingly enough, by ‘|’.)

• ‘|’ (nor, short for not or): negation of the disjunction (“or”) of its two operands.
(This operator is sometimes also called the Quine arrow and denoted by ‘↓’.)

The following table lists these new binary operators, the way we denote each of them in
our Python code (note that most are denoted by a sequence of two or even three characters),
and the truth table by which their semantics are defined:

Operator: ⊕ ↔ & |
name: xor iff nand nor
Python representation: + <−> −& −|
Value of ‘False operator False’: False True True True
Value of ‘False operator True’: True False True False
Value of ‘True operator False’: True False True False
Value of ‘True operator True’: False True False False

Task 1. Extend the Formula class from Chapter 1 to also support the four new bi-
nary operators defined above. Start by changing the function is_binary() in the file
propositions/syntax.py from:

propositions/syntax.py (old)

def is_binary(string: str) -> bool:
"""Checks if the given string is a binary operator.

Parameters:
string: string to check.

Returns:
``True`` if the given string is a binary operator, ``False`` otherwise.

"""
return string == '&' or string == '|' or string == '->'

to:
propositions/syntax.py (new)

def is_binary(string: str) -> bool:
"""Checks if the given string is a binary operator.

Parameters:
string: string to check.

Returns:
``True`` if the given string is a binary operator, ``False`` otherwise.

"""
return string in {'&', '|', '->', '+', '<->', '-&', '-|'}

Chapter 3 40 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Next, make the necessary changes to the method _parse_prefix() of class Formula.
Finally, verify that all the methods (both instance methods and static methods) that you
have implemented in this class in Chapter 1 now function properly for all of the seven
(old and new) binary operators; with some luck (and good software engineering) you will
require no further changes in your code beyond the above changes to is_binary() and
_parse_prefix(). (As with every task, we provide tests also for the above, to help you
check your implementation of this extended functionality.)

Task 2. Extend the evaluate() function from Chapter 2 to also support the four new op-
erators defined above. Verify that the functions truth_values(), print_truth_table(),
is_tautology(), is_contradiction(), and is_satisfiable() from that chapter “in-
herit” the support for the above operators from your changes to the evaluate() function.

We may, of course, decide to add operators with even higher arity. For example the
ternary (taking three operands) operator mux (short for multiplexer) takes three Boolean
values a, x, and y, and evaluates to x if a is True and to y if a is False. There is no semantic
difficulty with adding such higher-arity operators, and the only issue to consider is which
syntax to choose to represent them. A simple choice is to use a functional notation like
‘mux(a,x,y)’, a solution that can apply to any operator of any arity and only requires that
we fix a name for the operator. Another option is to use some specific notation for ternary
operators. For example, in some programming languages the notation a?x:y is used for the
ternary mux operator. Everything that we discuss in the rest of the chapter also applies to
any additional operators of any arity. As you have shown in Chapter 2, though, that any
operator of any higher arity can be expressed (that is, its truth table can be synthesized)
using operators of arity two or less, in order to avoid the technical details of fixing a syntax
for higher-arity operators, our discussion will safely avoid operators of higher arity.

2 Substitutions
So, adding operators to our Logic turned out to be quite easy. We now start looking at
doing the opposite: removing operators. The idea is very simple: if you can “express”
one operator using others, then you can take any formula that uses the former operator
and convert it to one that does not use it by substituting each instance of this operator
with the appropriate combination of other operators. In this section we will focus on the
mechanics of this type of substitution, which as we will see can be done in a completely
syntactic manner.

Before we consider the task of substituting for an operator, we handle a simpler task of
substituting for variable names, which is essentially a way of composing formulas. Suppose
that we have a formula φ that uses some variable names v1, . . . , vn and a sequence of
formulas ψ1, . . . , ψn (over some set of other variable names), then we can compose φ with
the ψis by (simultaneously) replacing in φ each occurrence of any vi with the (sub)formula
ψi, obtaining a single formula of which we can think as φ(ψ1, . . . , ψn), over the set of the
variable names of the ψis (without the original vis). For example, taking the formula
‘((x→x)|y)’ and replacing the variable name ‘x’ with the formula ‘(q&r)’ and the variable
name ‘y’ with the formula ‘p’, we obtain the single formula ‘(((q&r)→(q&r))|p)’.

Chapter 3 41 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Task 3. Implement the missing code for the method substitute_variables(
substitution_map) of class Formula, which takes a dictionary that maps some variable
names to formulas, and returns the composition of the current formula with these formulas.

propositions/syntax.py

class Formula:
...

def substitute_variables(self, substitution_map: Mapping[str, Formula]) -> \
Formula:

"""Substitutes in the current formula, each variable name `v` that is a
key in `substitution_map` with the formula `substitution_map[v]`.

Parameters:
substitution_map: mapping defining the substitutions to be

performed.

Returns:
The formula resulting from performing all substitutions. Only
variables name occurrences originating in the current formula are
substituted (i.e., variable name occurrences originating in one of
the specified substitutions are not subjected to additional
substitutions).

Examples:
>>> Formula.parse('((p->p)|r)').substitute_variables(
... {'p': Formula.parse('(q&r)'), 'r': Formula.parse('p')})
(((q&r)->(q&r))|p)

"""
for variable in substitution_map:

assert is_variable(variable)
Task 3.3

Guidelines: When replacing occurrences of a variable name v with the formula ψ to
which v is mapped by the given dictionary, you should not duplicate the formula ψ for
each substitution of an occurrence of v, but rather have the same Formula object for ψ (the
object from the given dictionary) be pointed to from all locations in the new formula tree
that correspond to places where v appears in the original formula. For example, say that
the current formula is ‘((p&q)|(~p&~q))’, and you are asked to replace ‘p’ in this formula
with the formula ‘(x→y)’, to obtain ‘(((x→y)&q)|(~(x→y)&~q))’. While in the textual
representation of the formula, each occurrence of ‘(x→y)’ is fully spelled out, when building
the Formula data structure for the composition, we ask you to use a single Formula object
(the one from the given substitution map) for both occurrences of ‘(x→y)’, by pointing to
this object from both places in the returned formula where ‘(x→y)’ appears. While this
means that the returned formula data structure is no longer a tree, but a directed acyclic
graph (DAG), this is completely fine and causes no problems in our implementation since
Formula objects are immutable. (So for example, we would never find ourselves modifying
one occurrence of ‘(x→y)’ in the formula and by doing so unintentionally modify the other
as well.) Moreover, this sharing of sub-data-structures clearly leads to a data structure that
is more memory-efficient than straight-forward parsing of the composed textual formula.2

2Conceptually, either of these data-structure representations are just representations of the composed
formula, and in this book we continue to just think about the formula and ignore any such “internal sharing”
in the code. For the benefit of interested readers, we do note, though, that the field of Computational
Complexity that studies the size of formulas, does however care much about the distinction of whether

Chapter 3 42 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

We are now ready to substitute formulas for operators. Suppose that we have a general
substitution rule that allows us to replace ‘(p∗q)’, where ‘∗’ is some given operator, by
some formula φ whose variable names are ‘p’ and ‘q’; for example this rule may be to
replace ‘(p&q)’ with ‘~(~p|~q)’. Now we can take any formula of the form ‘(ψ1∗ψ2)’ where
ψ1 and ψ2 are arbitrary subformulas, and replace it with φ(ψ1, ψ2) (as defined in the
beginning of this section); for example, if ψ1 is ‘(x|y)’ and ψ2 is ‘~x’, then ‘(ψ1&ψ2)’
is ‘((x|y)&~x)’, and we can replace it with ‘~(~(x|y)|~~x)’. Despite the fact that this
substitution is completely syntactic (“copy-paste”, if you wish), it should be clear that
if ‘(p∗q)’ and φ both have the same truth table, then it is also true that ‘(ψ1∗ψ2)’ and
φ(ψ1, ψ2) both have the same truth table, but this semantic discussion will be left for the
next section. In this section we only ask you to perform this syntactic substitution, but
in a general way, that is, finding all matching subformulas and (simultaneously) replacing
them, and also handling substitution rules for several different operators at the same time.

Task 4. Implement the missing code for the method substitute_operators(
substitution_map) of class Formula. This method takes as input a dictionary that maps
some operators to formulas, where each of these formulas is over the variable names ‘p’
and ‘q’, where ‘p’ is agreed to serve as a placeholder for the first operand of the operator
mapped to the formula (if the operator is unary or binary), and ‘q’ is agreed to serve as a
placeholder for the second operand of the operator (if the operator is binary). The method
returns a formula obtained from the current formula by replacing, for each operator that
is a key in the given dictionary, each occurrence of this operator with the formula to which
the dictionary maps this operator, where in that formula every occurrence of ‘p’ is replaced
with the first operand of the operator in the original formula and every occurrence of ‘q’
is replaced with the second operand of the operator in the original formula. (In particu-
lar, if the operator is ‘T’ or ‘F’, then it is simply replaced with the formula to which the
dictionary maps it, without making any substitutions in that formula.)

propositions/syntax.py

class Formula:
...

def substitute_operators(self, substitution_map: Mapping[str, Formula]) -> \
Formula:

"""Substitutes in the current formula, each constant or operator `op`
that is a key in `substitution_map` with the formula
`substitution_map[op]` applied to its (zero or one or two) operands,
where the first operand is used for every occurrence of 'p' in the
formula and the second for every occurrence of 'q'.

Parameters:

sharing sub-data-structures is or is not allowed: in the language of that field, the term formula size refers
to the size of a tree representation that does not allow sharing, while the term circuit size is used for
a DAG representation that is allowed to share intermediate results. Naturally, the latter may be smaller
than the former, and in fact it turns out that sometimes even significantly so. It is still a central open
problem of computational complexity theory whether the gap between the formula size and the circuit
size can be super-polynomial (grow faster than any polynomial). This is called the “NC1 = P?” question
(an equality here would mean that the gap cannot be super-polynomial), and it turns out to precisely
capture the question of whether every computation can be significantly parallelized. This is already the
second example that we see (the first was the question of efficient satisfiability, discussed in Chapter 2)
of a question that may seem at first glance to be a purely theoretical question of interest mainly to logic
aficionados, but in fact turns out to have far-reaching applied implications to virtually any computationally
heavy task that you could imagine.

Chapter 3 43 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

substitution_map: mapping defining the substitutions to be
performed.

Returns:
The formula resulting from performing all substitutions. Only
operator occurrences originating in the current formula are
substituted (i.e., operator occurrences originating in one of the
specified substitutions are not subjected to additional
substitutions).

Examples:
>>> Formula.parse('((x&y)&˜z)').substitute_operators(
... {'&': Formula.parse('˜(˜p|˜q)')})
˜(˜˜(˜x|˜y)|˜˜z)

"""
for operator in substitution_map:

assert is_constant(operator) or is_unary(operator) or \
is_binary(operator)

assert substitution_map[operator].variables().issubset({'p', 'q'})
Task 3.4

Guidelines: You should once again be frugal in your duplications of subformulas. That is,
whichever subformulas (subtrees) of the original formula that you can use in their entirety
in the returned formula, you should point to instead of duplicating.

3 Complete Sets of Operators
Now that we have the mechanics of substituting for operators in place, we can proceed
to the heart of the issue of “getting rid” of unnecessary logical operators. The following
is a key definition that will guide us to make sure that we don’t “get rid” of too many
operators:

Definition (Complete Set of Operators). A set of logical operators is called complete if
every Boolean function (of any arity) can be expressed using only the operators in the set.

The notion of “expressed” here is a semantic one: there exists a formula that uses
only these operators, whose truth table is the one of the given Boolean function. In this
language, the main result proved in Chapter 2 was that the set of operators {‘~’,‘&’,‘|’} is
complete (since the DNF Theorem states that every Boolean function can be represented
in disjunctive normal form, a form that only uses these three operators).

In this chapter we will demonstrate other sets of operators that are complete, a task
that will turn out to be easier using the fact that we already have one such set in our
toolbox. The basic idea is simple: once we know that we can represent a Boolean function
using one set of operators, if we can in turn represent each of the operators in this set
using a second set of operators, then using substitution we can get a representation of the
original Boolean function using (only) the latter set of operators.

To get used to this type of substitution, your next task is to take an arbitrary formula
that uses any of the extended family of operators introduced so far and convert it to a
formula that uses only the set of operators {‘~’,‘&’,‘|’}. Of course, from Chapter 2 we
already know that this is possible as there exists a DNF formula that has the same truth
table as the original formula. Indeed, one semantic way to achieve this would be to calculate
the truth table of the given formula, and then synthesize a formula in DNF that has the
same truth table:

Chapter 3 44 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

synthesize(formula.variables(),
truth_values(formula(), all_models(formula.variables())))

The problem with this approach is that it takes exponential time. Therefore, in the next
task, you are asked to implement the same functionality in a syntactic rather than semantic
way that, beyond being a good exercise, has the additional advantage of being far more
efficient.

The file propositions/operators.py contains a list of functions that you are asked
to implement in the remainder of this chapter.
Task 5. Implement the missing code for the function to_not_and_or(formula), which
returns a formula that is equivalent to the given formula (i.e., a formula having the same
truth table), but may only use the operators not, and, and or in it.

propositions/operators.py

def to_not_and_or(formula: Formula) -> Formula:
"""Syntactically converts the given formula to an equivalent formula that
contains no constants or operators beyond '˜', '&', and '|'.

Parameters:
formula: formula to convert.

Returns:
A formula that has the same truth table as the given formula, but
contains no constants or operators beyond '˜', '&', and '|'.

"""
Task 3.5

Hint: Substitute (using your solution for Task 4) each other operator with an equivalent
formula that uses only the allowed operators.

We are now ready for the crux of this chapter: showing that a few other sets of operators
are complete. As we know that the set {‘~’,‘&’,‘|’} is complete, to show that another set
of operators is complete, it suffices to represent only each of the three operators ‘~’, ‘&’,
and ‘|’ using operators from that latter set.
Task 6. Implement the missing code for the four functions to_not_and(formula),
to_nand(formula), to_implies_not(formula), and to_implies_false(formula), each
of which returns a formula that is equivalent to the given formula, but may only use the
operators listed in the name of that function.

propositions/operators.py

def to_not_and(formula: Formula) -> Formula:
"""Syntactically converts the given formula to an equivalent formula that
contains no constants or operators beyond '˜' and '&'.

Parameters:
formula: formula to convert.

Returns:
A formula that has the same truth table as the given formula, but
contains no constants or operators beyond '˜' and '&'.

"""
Task 3.6a

def to_nand(formula: Formula) -> Formula:
"""Syntactically converts the given formula to an equivalent formula that

Chapter 3 45 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

contains no constants or operators beyond '-&'.

Parameters:
formula: formula to convert.

Returns:
A formula that has the same truth table as the given formula, but
contains no constants or operators beyond '-&'.

"""
Task 3.6b

def to_implies_not(formula: Formula) -> Formula:
"""Syntactically converts the given formula to an equivalent formula that
contains no constants or operators beyond '->' and '˜'.

Parameters:
formula: formula to convert.

Returns:
A formula that has the same truth table as the given formula, but
contains no constants or operators beyond '->' and '˜'.

"""
Task 3.6c

def to_implies_false(formula: Formula) -> Formula:
"""Syntactically converts the given formula to an equivalent formula that
contains no constants or operators beyond '->' and 'F'.

Parameters:
formula: formula to convert.

Returns:
A formula that has the same truth table as the given formula, but
contains no constants or operators beyond '->' and 'F'.

"""
Task 3.6d

Your solution to Task 6 proves the following theorem:

Theorem. The following four sets of operators are each (separately) a complete set of
operators:

a. The set containing only ‘~’ (not) and ‘&’ (and)

b. The singleton set containing only ‘&’ (nand)

c. The set containing only ‘→’ (implies) and ‘~’ (not)

d. The set containing only ‘→’ (implies) and ‘F’ (False)

This is not an exhaustive list of complete sets of operators, of course: any superset of a
complete set of operators is itself complete. There are also a few other minimal complete
sets of operators; in particular the singleton set of ‘|’ (nor) by itself is also a complete set.
There are also minimal complete sets of operators that contain operators of arity higher
than 2, such as the set containing only mux and ‘~’ (not). Nevertheless, the above are
arguably the most interesting complete sets of operators.

Chapter 3 46 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Once we know that a set of operators is complete, we can limit ourselves to using
only this set, knowing that nothing of the essence is lost in the sense that still every
truth table can be expressed using some formula in our logic. This will be our approach
in the rest of our discussion of Propositional Logic, where we will restrict ourselves to
the complete set that only contains ‘→’ (implies) and ‘~’ (not), shunning not only the
new operators introduced in this chapter but also the familiar disjunction and conjunction
binary operators ‘&’ and ‘|’, as well as the constants ‘T’ and ‘F’. This will naturally simplify
all technicalities without affecting anything substantial.

4 Proving Incompleteness
It is natural to wonder which other sets of operators are complete. For example, as we have
seen that the set containing only ‘→’ and ‘F’ is complete, it is natural to ask whether the
set containing only ‘→’ and ‘T’ is also complete, or maybe even the singleton set containing
only ‘→’. Similarly, as we have seen that the set containing only ‘&’ and ‘~’ is complete, it
is natural to ask whether the set containing only ‘&’ and ‘|’ is also complete, etc. In this
section we will prove negative answers to these and other questions. As expected, since
these are negative results, they will not be proven by programming, but rather by classical
mathematical arguments.

How can one go about proving that there is no way to represent some function using
a given set of operators? Well, one very useful proof technique is actually quite simple:
identify a property of Boolean functions that must hold for all Boolean functions that
can be represented using only this given set of operators, and then exhibit some Boolean
function that does not have this property. As we will see, though, pinpointing the right
property to use is somewhat of an art. The following theorem, which answers (among
others) the two specific questions raised above, has an especially simple proof of this form:

Theorem. The set of operators containing ‘&’, ‘|’, ‘→’, ‘T’, ‘↔’, and ‘mux’3 is not com-
plete. In particular it cannot represent the constant function with value False, or the
negation function.

Proof. The property that all functions composed only of the operators ‘&’, ‘|’, ‘→’, ‘T’,
‘↔’, and ‘mux’ share is the following:

Definition (T-Preservation). A Boolean function f is called T-preserving if whenever
the values of all its input values are True, the function also outputs True.

To see that every function composed of these operators is T-preserving, we need to note
two things: first that all six operators in the list have this property (this can be seen directly
by simply plugging in all-True values into each of these and evaluating), and second that
composing functions with this property also maintains the property. The second point is
true since if you take T-preserving functions f and g and look at their composition f(g(·), ·)
(where · denotes an arbitrary set of values), then if all input values are True then so is g(·)
and then all input values to f are True so thus is also f(·). Formally, this is then proved
by induction on the length of the formula.4

3Recall that ‘mux’ is the ternary operator such that ‘mux(x, y, z)’ evaluates to the same value as
‘((x&y)|(~x&z))’.

4 Here is the formalistic argument: We are given a formula composed only of these operators and need
to show that when the input values are all True the formula also evaluates to True. The base case is if
the formula is either a variable name or the nullary operator ‘T’, and in these two cases clearly the value

Chapter 3 47 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

We next need to identify a function that does not have this property, and conclude
that it cannot be composed of the above operators (so they do not form a complete set).
As this function we can choose, e.g., the constant function that always has value False, or
the negation function, both of which are not T -preserving.

The above theorem provides a rather satisfactory answer to the question of why ‘→’
and ‘T’ do not comprise a complete set of operators, and while it also shows that ‘&’ and ‘|’
(and ‘T’) do not comprise a complete set, the really interesting question is whether the
set containing ‘&’ and ‘|’ in addition to both constants ‘T’ and ‘F’ is complete. As we will
now prove, it turns out that it is not the case:

Theorem. The set of operators containing ‘&’, ‘|’, ‘T’, and ‘F’ is not complete. In par-
ticular it cannot represent the negation function.

Proof. The key property here will be that of monotonicity:

Definition (Monotonicity). A Boolean function f is called monotone if whenever for
some input (that is, for some tuple of input values) f evaluates to True, it also continues
to evaluate to True even if we modify the input by changing some of the input values from
False to True.5

For a monotone function, changing some of the input values from False to True can
only lead to the function’s value changing from False to True (or not changing at all) and
never to the value changing in the opposite direction, from True to False. It is clear that
‘&’, ‘|’, ‘T’ and ‘F’ are all monotone, and that composition maintains monotonicity: if f
and g are monotone, then looking at the effect of changing the value of some input from
False to True on the value of f(g(·), ·)), we observe that since g(·) can only change from
False to True then this is true for all of the input values to f and thus also for its output.

In contrast, the negation function is not monotone, since when its input changes from
False to True its output changes form True to False. We conclude that the negation
function cannot be composed of the above operators, and so they do not form a complete
set.

All of the sets that we have so far proven to be incomplete do not contain the negation
operator (and moreover, negation cannot be composed of any of these sets, and in fact
adding the negation operator to any of these sets yields a complete set of operators). We
will now show that a different set, which contains also the negation operator, is incomplete.
The property that we will use to achieve this is more subtle, and to pinpoint it will require
somewhat more thought.

Theorem. The set of operators containing ‘T’, ‘F’, ‘~’, ‘⊕’, and ‘↔’ is not complete. In
particular it cannot represent the conjunction (“and”) function or the disjunction (“or”)
function.

of the function is True. Otherwise, we apply the induction hypothesis to each of the two (or three in the
case of ‘mux’) operands of the root operator to obtain that they evaluate to True, which then implies that
the value of the whole formula is True.

5The name “monotonicity” comes from viewing these functions as functions from vectors of zeros and
ones to zeros and ones, with False corresponding to zero and True corresponding to one. A function is
monotone in the above sense if and only if when viewed this way it is monotone in each of its coordinates
in the standard numeric sense.

Chapter 3 48 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Proof. The key property here, affineness, may seem at first glance to have been hard to
come up with, but as we will discuss, it in fact can be seen to be quite natural from an
algebraic point of view that views {False,True} as a field with two elements.

Definition (Affineness). A Boolean function f is called affine if it is equivalent (in the
sense of having the same truth table) either to the xor of a subset6 of its inputs7 or to the
negation of the xor of a subset of its inputs.8

It is easy to see that each of the operators ‘T’, ‘F’, ‘~’, and ‘⊕’ is affine since it can be
written as a xor of a subset of its inputs, or as the negation of such a xor.

Affine functions are precisely those functions that have the property that each of their
inputs either never affects their output (this is the case when this input is not one of
the xored inputs), or always affects their output in the sense that regardless of the other
inputs, changing this input changes the output (this is the case when this input is one
of the xored inputs). We can therefore immediately conclude that the conjunction and
disjunction functions are not affine: for example, for the conjunction function we note that
if the first input is False then the second input does not affect the output but if the first
input is True then the second input does affect the output, so it is not true that the second
input either never affects the output regardless of the other inputs or always affects the
output regardless of the other inputs. It therefore remains to check that any composition
of affine functions is affine.

There are two ways to complete the proof. One of them is via the algebraic point of
view that led us to consider affineness to begin with: it is a well-known fact from linear
algebra that the composition of affine transformations is itself an affine transformation. For
those who are unfamiliar with this property of affine transformations, the second way to
complete this proof is that it is easy to reprove this property in our special case of Boolean
functions: if we replace one of the inputs of an affine function by an affine function, then
any input that is xored with itself simply “cancels out,” as do two negations, leaving us
with an affine function.

We have seen that the set containing not and and is complete, and so is the singleton
set containing only nand. We have seen that the set containing not and or is complete,
and so is the singleton set containing only nor. We have seen that the set containing not
and implies is complete. It is natural to therefore ask whether the singleton set contain-
ing only what one may be tempted to analogously call “nimplies”, non-implication, is
complete. That is, whether the singleton set containing only the binary operator ‘→’,
whose semantics we define by defining its output to be the negation of the output of
the implies operator on the same inputs,9 is complete. This turns out not to be true,

6Like the operators ‘&’ and ‘|’ (but unlike the operator ‘→’, for example), the xor operator is com-
mutative and associative: if we xor several values, the order in which we xor them does not alter the
output, so for any given set of values, their xor is well defined with no need to specify any ordering,
placement of parentheses, etc.

7By convention, we consider the xor of an empty set of inputs to be False.
8The name “affineness” comes from viewing these functions (somewhat similarly to the explanation of

monotonicity above) as mappings from the vector space over the two-element field (note that xor is simply
the addition operation of this field), to that field. A function is affine in the above sense if and only if
when viewed this way it is an affine transformation in the standard linear-algebraic sense, i.e., a linear
transformation plus a constant (since over the two-element field, adding the constant one is equivalent to
negating the value).

9Attentive readers may notice that this is the last binary operator that we have not discussed so far.
Recall that there are 16 possible binary operators, eight of which are unary (or nullary) operators in
disguise and eight “really are” binary operators (in the sense that none of them always disregards one or

Chapter 3 49 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

and you are invited to try and prove this yourself, using the same technique of finding
a property that every Boolean function that can be built from instances of this opera-
tor satisfies, and then exhibiting a Boolean function that does not satisfy this property.
Hint: Search for a property, inspired by one of the properties above, that is common to
‘→’, ‘F’, ‘&’, ‘|’, ‘⊕’, and ‘mux’, and to every function constructed using only them, that
would enable you to show that the set of operators containing all of these is not complete
(and hence, every subset of this set, including the singleton set containing only the operator
‘→’, is not complete).

more of its inputs). Of the latter, we already defined three in Chapter 2 and four more in the beginning
of this chapter, and the last remaining one is this so-called “nimplies” operator.

Chapter 3 50 Draft; comments welcome

	1 More Operators
	2 Substitutions
	3 Complete Sets of Operators
	4 Proving Incompleteness

