This material will be published by Cambridge University Press as:
Mathematical Logic through Python by Yannai A. Gonczarowski and Noam Nisan

This pre-publication version is free to view and download for personal use only. Not for re-distribution,
re-sale or use in derivative works. Please link to: www.LogicThruPython.org
© Yannai A. Gonczarowski and Noam Nisan 2017-2021.

Chapter 4:
Proot by Deduction

In this chapter, we will define the syntax of a deductive proof, i.e.,; a formal proof
that starts from a set of assumptions, and proceeds step by step by inferring additional
intermediate results, until the intended conclusion is inferred. Specifically, a significant
portion of this chapter will be focused on verifying the syntactic validity of a given proof.

1 Inference Rules

Before getting into proofs, we will define the notion of an inference rule that allows us
to proceed in a proof by deducing a “conclusion line” from previous “assumption lines”.
Moreover, what a proof proves is a “lemma” or a “theorem”, which, as we will see, may
itself be viewed as an inference rule that states that the conclusion of the lemma or theorem
follows from its assumptions.

Definition (Inference Rule). An inference rule is composed of a list of zero or more
propositional formulas called the assumptions of the rule, and one additional proposi-
tional formula called the conclusion of the rule.

An example of an inference rule is as follows: Assumptions: ‘(p|q)’, ‘(~p|r)’; Conclusion:
‘(qr)> An inference rule need not necessarily have any assumptions. An example of an
assumptionless (i.e., with zero assumptions) inference rule is as follows: (Assumptions:
none;) Conclusion: ‘(~p|p)-

The file propositions/proofs.py defines (among other classes) a Python class
InferenceRule for holding an inference rule as a list of assumptions and a conclusion,
all of type Formula.

/ [propositions/proofs.py] \

@frozen

class InferenceRule:
"""An immutable inference rule in Propositional Logic, comprised of zero
or more assumed propositional formulas, and a conclusion propositional
formula.

Attributes:
assumptions: the assumptions of the rule.
conclusion: the conclusion of the rule.
nnn
assumptions: Tuple[Formula, ...]
conclusion: Formula

def __init__(self, assumptions: Sequence[Formula], conclusion: Formula):
"""Initializes an ~InferenceRule  from its assumptions and conclusion.

Parameters:

51 Draft; comments welcome


www.LogicThruPython.org

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

assumptions: the assumptions for the rule.
conclusion: the conclusion for the rule.
nnn
self.assumptions = tuple(assumptions)
self.conclusion = conclusion

Task 1. Implement the missing code for the method variables () of class InferenceRule,
which returns all of the variable names that appear in any of the assumptions and/or in
the conclusion of the rule.

( iti B
Ve kprop031t10ns/proofs.pyj ~

class InferenceRule:

def variables(self) -> Setl[str]:
"""Finds all variable names in the current inference rule.

Returns:
A set of all variable names used in the assumptions and in the
conclusion of the current inference rule.

\\ # Task 4.1 J}

Examples: If rule is the first inference rule (the one with two assumptions) given as an
example above, then rule.variables() should return {'p', 'q', 'r'}, and if rule is
the second inference rule (the assumptionless one) given as an example above, then this
call should return {'p"'}.

In most of this chapter we will allow for arbitrary inference rules (arbitrary assumptions
and arbitrary conclusion) and focus solely on the syntax of using them in deductive proofs.
This syntax in particular will not depend much on whether any of these inference rule is
semantically “correct” or not. We will later however be more specific about our inference
rules, and the first requirement that we will want is for all of them to indeed be semantically
sound:

Definition (Entailment; Soundness). We say that a set of assumption formulas A entails
a conclusion formula ¢ if every model that satisfies all the assumptions in A also satisfies
¢. We denote this by A = ¢.! We say that the inference rule whose assumptions are the
elements of the set A and whose conclusion is ¢ is sound? if A = ¢.

For example, it is easy to verify that {‘p’,(p—q)’} F ‘q’, and thus the inference
rule having assumptions ‘p’ and ‘(p—q)’ and conclusion ‘q’ is sound.? Similarly, the two
inference rules given as examples above are also sound. On the other hand, the inference
rule with the single assumption ‘(p—q)’ and the conclusion ‘(q—p)’ is not sound since
the model that assigns False to ‘p’ and True to ‘q’ satisfies the assumption but not the
conclusion. If A is a singleton set, then we sometimes remove the set notation and write,
for example, ‘~~p’ |= ‘p’ (the inference rule having these assumption and conclusion is
called Double-Negation Elimination). If A is the empty set then we simply write

L The symbol k= is sometimes used also in a slightly different way: for a model M and a formula ¢
one may write M |= ¢ (i.e., M is a model of ¢) to mean that ¢ evaluates to True in the model M. For
example, {'p’: True,‘q’ : False} = ‘(p&~q).

2What we call sound inference rules are often called truth-preserving inference rules in other text-
books.

3This inference rule is called Modus Ponens, and will be of major interest starting in the next chapter.

Chapter 4 59 Draft; comments welcome



Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

= ¢, which is equivalent to saying that ¢ is a tautology. Thus, for example, = ‘(p|~p)’
(the assumptionless inference rule having this conclusion is called the Law of Excluded
Middle).

The next two tasks explore the semantics of inference rules. Accordingly, the
functions that you are asked to implement in these tasks are contained in the file
propositions/semantics.py.

Task 2. Implement the missing code for the function evaluate inference(rule,
model), which returns whether the given inference rule holds in the given model, that
is, whether it is not the case that all assumptions hold in this model but the conclusion
does not.

e Iy ; N
/ kpropos:.tlons/semantlcs.py) \

def evaluate_inference(rule: InferenceRule, model: Model) -> bool:
"""Checks if the given inference rule holds in the given model.

Parameters:
rule: inference rule to check.
model: model to check in.

Returns:
“"True”~ if the given inference rule holds in the given model, ~“False "
otherwise.
Examples:
>>> evaluate_inference(InferenceRule([Formula('p')], Formula('q')),
e {'p': True, 'q': Falsel})
False

>>> evaluate_inference(InferenceRule([Formula('p')], Formula('q')),
o {'p': False, 'q': False})
True
assert is_model (model)
# .
\_ Task 4.2 .

Task 3. Implement the missing code for the function is_sound_inference(rule), which
returns whether the given inference rule is sound, i.e., whether it holds in every model.

e .y ; N
/ Kpropos:.tlons/semantlcs.pyJ \

def is_sound_inference(rule: InferenceRule) -> bool:
"""Checks if the given inference rule is sound, i.e., whether its
conclusion is a semantically correct implication of its assumptions.

Parameters:
rule: inference rule to check.

Returns:

“"True™" if the given inference rule is sound, ~“False ~ otherwise.
nnn

\_ # Task 4.3 Y,

Chapter 4 53 Draft; comments welcome



Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

2 Specializations of an Inference Rule

We will usually think of an inference rule as a template where the variable names serve
as placeholders for formulas. For example if we look at the Double-Negation Elimination
rule, the inference rule having assumption ‘~~p’ and conclusion ‘p’, we may plug any
formula into the variable name ‘p’ and get a “special case,” or a specialization, of the
rule. For example, we may substitute ‘(q—r)’ for ‘p’ and get the inference rule having
assumption ‘~~(q—r)’ and conclusion ‘(q—r). Or, we may substitute ‘x’ for ‘p’ and get
the inference rule having assumption ‘~~x’ and conclusion ‘x’. Both of these inference rules
are specializations of the original inference rule.*

Definition (Specialization). An inference rule § is a specialization of an inference rule
« if there exist a number of formulas ¢4, ..., ¢, and a matching number of variable names
V1, ..., Uy, such that [ is obtained from « by (simultaneously) substituting the formula ¢;
for each occurrence of the variable name v; in all of the assumptions of « (while maintaining
the order of the assumptions) as well as in its conclusion.

Given an inference rule and a desired substitution/specialization map, it is quite easy
to obtain the specialized inference rule.

Task 4. Implement the missing code for the method specialize(specialization_map)
of class InferenceRule, which returns the specialization of the inference rule according to
the given specialization map.

/ [propositions/proofs.py] ~

#: A mapping from variable names to formulas.
SpecializationMap = Mappingl[str, Formulal

class InferenceRule:

def specialize(self, specialization_map: SpecializationMap) -> \
InferenceRule:
"""Specializes the current inference rule by simultaneously substituting
each variable name “v° that is a key in “specialization_map~ with the
formula “specialization_mapl[v]’.

Parameters:
specialization_map: mapping defining the specialization to be
performed.

Returns:
The resulting inference rule.
nnn
for variable in specialization_map:
assert is_variable(variable)
\_ # Task 4.4 Y

Hint: Use the substitute_variables() method of class Formula, which you imple-
mented in Chapter 3 and which performs a similar substitution for a single formula.

4We do not primarily think of the variable names in specializations, such as the specialization having
assumption ‘~~(q—r)’ and conclusion ‘(q—r)’ or the specialization having assumption ‘~~x’ and conclu-
sion ‘x’ in the example above, as placeholders for further substitutions. Nonetheless, we still call these
specializations inference rules, just like we do the “general” rule having assumption ‘~~p’ and conclusion
[y

p’ (in which we do think of the variable name as a placeholder), as it will be very convenient to use the
same Python object for both “general” rules and specializations.

Chapter 4 54 Draft; comments welcome



Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Given two inference rules, it is only slightly more difficult to tell whether one is a
specialization of the other. First, the number of assumptions should match. Then, for
every formula in the assumptions or the conclusion there should be a match between the
formula in the “general” rule and the corresponding formula in the alleged specialization: if
the “general” formula is a variable name then the specialized formula may be any formula;
otherwise, the root of the specialized formula must be identical to the root of the general
formula, and the subtrees should match recursively in the same way. Moreover, there is
an important additional consistency condition: all occurrences of each variable name in
the general rule must correspond to the same subformula throughout the specialization.
In the following task you are asked to implement this procedure.

Task 5. In this task you will not only determine whether a given inference rule is a special-
ization of another, but you will also, if this is the case, find the appropriate specialization
map. We will continue to represent a specialization map as a Python dictionary (mapping
variable names of the general rule to subformulas of the specialized rule), and use Python’s
None value to represent that no specialization map exists since the alleged specialization
is in fact not a specialization of a given general rule.

a. Start with the basic check that ensures all occurrences of each variable name
are consistently mapped to the same subformula. Implement the missing
code for the static method _merge specialization maps(specialization_mapl,
specialization_map2) of class InferenceRule, which takes two specialization
maps, checks whether they are consistent with each other in the sense that no vari-
able name appears in both but is mapped to a different formula in each, and if so,
returns the merger of the maps, and otherwise returns None.

( it B
Ve kpropos1t10ns/proofs.py) ~

class InferenceRule:

@staticmethod
def _merge_specialization_maps(
specialization_mapl: Union[SpecializationMap, None],
specialization_map2: Union[SpecializationMap, None]) -> \
Union[SpecializationMap, Nomne]:
"""Merges the given specialization maps while checking their
consistency.

Parameters:
specialization_mapl: first mapping to merge, or " ~None~
specialization_map2: second mapping to merge, or " ~None®

Returns:
A single mapping containing all (key, value) pairs that appear in
either of the given maps, or ~“None ~ if one of the given maps is
““None™ " or if some key appears in both given maps but with
different values.

nnn

if specialization_mapl is not None:
for variable in specialization_mapl:

assert is_variable(variable)

if specialization_map2 is not None:

for variable in specialization_map2:

Chapter 4 55 Draft; comments welcome



Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

assert is_variable(variable)
# Task 4.5a

b. Proceed to figuring out which specialization map (if any) makes a given
formula a specialization of another. Implement the missing code for the
static method _formula specialization_map(general, specialization) of
class InferenceRule, which takes two formulas and returns such a specialization
map if the second given formula is indeed a specialization of the first, and None
otherwise.

( iti B
Ve kproposrclons/proofs.pyj ~

class InferenceRule:

@staticmethod
def _formula_specialization_map(general: Formula, specialization: Formula) \
-> Union[SpecializationMap, None]:
"""Computes the minimal specialization map by which the given formula
specializes to the given specialization.

Parameters:
general: non-specialized formula for which to compute the map.
specialization: specialization for which to compute the map.

Returns:
The computed specialization map, or "~“None " if “specialization” is

in fact not a specialization of “general’.
nnn

K # Task 4.5Db j

Hint: Use the _merge_specialization_maps() method that you have just imple-
mented.

c. Finally, put everything together to tell if and how one inference rule is
a specialization of another. Implement the missing code for the method
specialization map(specialization) of class InferenceRule, which takes an al-
leged specialization of the current rule, and returns the corresponding specialization
map, or None if the alleged specialization is in fact not a specialization of the current
rule. Remember that the definition of a specialization requires that the order of the
assumptions be preserved.

( i td B
Ve kpropos1t10ns/proofs.pyj ™

class InferenceRule:

def specialization_map(self, specialization: InferenceRule) -> \
Union[SpecializationMap, None]:
"""Computes the minimal specialization map by which the current
inference rule specializes to the given specialization.

Parameters:
specialization: specialization for which to compute the map.

Returns:
The computed specialization map, or "~“None ~ if “specialization” is
in fact not a specialization of the current rule.

Chapter 4 56 Draft; comments welcome



Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

K # Task 4.5c j

Note that if we just want to tell whether one rule is or is not a specialization of
another, we just need to check whether specialization_map() returns a specialization
map rather than None, which we have already implemented for you as a method of class
InferenceRule.

Ve [propositions/proofs.py] ~

class InferenceRule:

def is_specialization_of (self, general: InferenceRule) -> bool:
"""Checks if the current inference rule is a specialization of the given
inference rule.

Parameters:
general: non-specialized inference rule to check.

Returns:
“"True™ "~ if the current inference rule is a specialization of
“general®, " "False "~ otherwise.
nnn
\_ return general.specialization_map(self) is not None )

3 Deductive Proofs

We are now ready to introduce the main concept of this chapter, the (deductive) proof.
Such a proof is a syntactic derivation of a conclusion formula (the conclusion of the “lemma”
or “theorem” being proven) from a set of assumption formulas (the assumptions of the
“lemma” or “theorem” being proven) via a set of inference rules (which we already take
as given). We will use the very standard form of a proof that proceeds line by line. Each
line in the proof may either be a direct quote of one of the assumptions of the lemma (or
theorem) that we are proving, or may be derived from previous lines in the proof using
a specialization of one of the inference rules that the proof may use. The last line of the
proof should exactly be the conclusion of the lemma that we are proving. As noted above,
in this chapter we will allow for arbitrary inference rules to be specified for use by a proof,
and so we will explicitly specify the set of inference rules that may be used in each proof.’
Here is an example of a proof:

Lemma to be proven: Assumption: ‘(x|y)’; Conclusion: ‘(y|x)’
Inference rules allowed:

1. Assumptions: ‘(p|q)’, ‘(~p|r)’; Conclusion: ‘(q|r)’

2. (Assumptions: none;) Conclusion: ‘(~p|p)’
Proof:

1. “(x|y)". Justification: assumption of the lemma to be proven.

5As we progress in the following chapters, we will converge to a single specific set of rules that will be
used from then onward.

Chapter 4 57 Draft; comments welcome



Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

2. ‘(~x|x). Justification: (conclusion of a) specialization of (the assumptionless) Al-
lowed Inference Rule 2.

3. ‘(y|x)’. Justification: conclusion of a specialization of Allowed Inference Rule 1; As-
sumption 1 of the specialization: Line 1, Assumption 2 of the specialization: Line 2.

When we quote an assumption of the lemma to be proven, we must quote it verbatim,
with no substitutions whatsoever. Thus, for example, Line 1 of the above proof precisely
quotes the assumption ‘(x|y)’, and could not have quoted instead, say, ‘(w|z)’, which indeed
does not follow from the assumption ‘(x|y)’. On the other hand, when we use an inference
rule to derive a line from previous lines, our derivation can use any specialization of that
rule. Thus, for example, Line 2 of the above proof uses the assumptionless inference rule
whose conclusion is ‘(~p|p)’ to derive ‘(~x|x)’ from an empty set of assumptions, as this
is a specialization obtained from that inference rule by substituting the formula ‘x’ for
the variable name ‘p’. Similarly, Line 3 of the above proof uses an inference rule having
assumptions ‘(x|y)’ and ‘(~x|x)” and conclusion ‘(y|x)’, which is a specialization of the first
allowed inference rule, obtained by substituting ‘x’ for ‘p” and for ‘r’, and ‘y’ for ‘q. When
we formally define a proof, as noted above, we think of the “lemma” or “theorem” to be
proven as an inference rule that states that the conclusion of the lemma follows from its
assumptions. As we will see in the next chapter, this will turn out to be very convenient
as it will easily allow us to use the proved “lemma” as an inference rule in a subsequent
proof.

Definition (Proof; Provability). Given a formula ¢, a set of formulas A, and a set of infer-
ence rules R, a proof via R of the inference rule having conclusion ¢ and assumptions A,
or simply a proof via R of the conclusion ¢ from the assumptions A, is a list of formulas
whose last formula is ¢, such that each of the formulas in the list either is in A or is the
conclusion of a specialization of a rule in R such that the assumptions of this specialization
are preceding formulas in the list. We say that the inference rule having assumptions A
and conclusion ¢ is provable via R, or simply that ¢ is provable from A via R, if there
exists a proof of that rule via R. We denote this by A Fr ¢.

We emphasize that the notion of a proof is completely syntactic, and therefore so is
the definition of A Fr ¢. However, when we think about a “proof” we intuitively desire
also some semantic property: that a “proof” indeed “proves” what it claims. That is,
that if we have a “proof” of some rule whose assumptions are correct, then indeed the
conclusion of the “proof” is also correct; in other words, that the rule that was proven is
sound. As we will see below, the notion of proof that we just described indeed has this
semantic property, as long as it is only allowed to use sound inference rules. But for now,
let us proceed to handle the syntax.

The file propositions/proofs.py also defines a class Proof for holding a deductive
proof. Each line of the proof, including its full justification, is held by the inner class
Proof.Line defined in the same file. (Note that unlike in the proof example given above,
in the code all line numbers are 0-based.)

SWhile a proof of an inference rule having assumptions A and conclusion ¢ could be seen as math-
ematically distinct from a proof of the conclusion ¢ from the assumption A, we will not require such a
distinction in this book.

Chapter 4 58 Draft; comments welcome



Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

/ [propositions/proofs.py} \

@frozen

class Proof:
"""An immutable deductive proof in Propositional Logic, comprised of a
statement in the form of an inference rule, a set of inference rules that
may be used in the proof, and a list of lines that prove the statement via
these inference rules.

Attributes:
statement: the statement proven by the proof.
rules: the allowed rules of the proof.
lines: the lines of the proof.

nnn

statement: InferenceRule

rules: FrozenSet[InferenceRule]

lines: Tuple[Proof.Line, ...]

def __init__(self, statement: InferenceRule,
rules: AbstractSet[InferenceRule],
lines: Sequence[Proof.Line]):
"""Tnitializes a “Proof™ from its statement, allowed inference rules,
and lines.

Parameters:
statement: the statement to be proven by the proof.
rules: the allowed rules for the proof.
lines: the lines for the proof.

nnn

self.statement = statement

self.rules = frozenset(rules)

self.lines = tuple(lines)

@frozen

class Line:
"""An immutable line in a deductive proof, comprised of a formula that
is justified either as an assumption of the proof, or as the conclusion
of a specialization of an allowed inference rule of the proof, the
assumptions of which are justified by previous lines in the proof.

Attributes:
formula: the formula justified by the line.
rule: the inference rule, out of those allowed in the proof, that
has a specialization that concludes the formula; or ~“None ™ if
the formula is justified as an assumption of the proof.
assumptions: tuple of zero or more numbers of previous lines in the
proof whose formulas are the respective assumptions of the
specialization of the rule that concludes the formula, if the
formula is not justified as an assumption of the proof.
nnn
formula: Formula
rule: Optional[InferenceRule]
assumptions: Optional [Tuple[int, ...]]

def __init__(self, formula: Formula,
rule: Optional[InferenceRule] = None,
assumptions: Optional [Sequence[int]] = Nomne):
"""Initializes a “Proof.Line” from its formula, and optionally its
rule and numbers of justifying previous lines.

Chapter 4 59 Draft; comments welcome



Mathematical Logic through Python

Yannai A. Gonczarowski and Noam Nisan

k

Parameters:
formula: the formula to be justified by the line.
rule: the inference rule, out of those allowed in the proof,
that has a specialization that concludes the formula; or
““None "~ if the formula is to be justified as an assumption
of the proof.
assumptions: numbers of previous lines in the proof whose
formulas are the respective assumptions of the
specialization of the rule that concludes the formula, or
““None "~ if the formula is to be justified as an assumption
of the proof.
nnn
assert (rule is None and assumptions is None) or \
(rule is not None and assumptions is not None)
self.formula = formula
self.rule = rule
if assumptions is not None:
self.assumptions = tuple(assumptions)

def is_assumption(self) -> bool:
"""Checks if the current proof line is justified as an assumption of

the proof.

Returns:
“"True” "~ if the current proof line is justified as an assumption
of the proof, "~“False " otherwise.

return self.rule is None

%

Task 6.

The goal of this task is to check whether a given (alleged) proof is indeed a valid

one, i.e., whether the lines of the proof in fact derive the conclusion of the statement from
its assumptions via the allowed inference rules as in the definition of a proof.

a. Start by implementing the missing code for the method rule for_line(
line number) of class Proof, which returns an inference rule comprised of the for-
mulas in the specified line and in all the lines by which it is justified.

-

\

class Proof:

def rule_for_line(self, line_number: int) -> Union[InferenceRule, None]:

( it B
kproposn'.lons/proofs.py) ~

"""Computes the inference rule whose conclusion is the formula justified
by the specified line, and whose assumptions are the formulas justified
by the lines specified as the assumptions of that line.

Parameters:
line_number: number of the line according to which to compute the

inference rule.

Returns:
The computed inference rule, with assumptions ordered in the order
of their numbers in the specified line, or ~“None " if the specified
line is justified as an assumption.

nnn

assert line_number < len(self.lines)

# Task 4.6a Y,

Chapter 4

60 Draft; comments welcome



Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

b. Continue by implementing the missing code for the method is_line_valid(
line number) of class Proof, which returns whether the specified line either is an
assumption and justified as such, or is the result of applying a specialization of the
inference rule by which the line is justified to the previous lines by which the line is
justified.

( i td B
Ve kproposnlons/proofs.pyj ™

class Proof:

def is_line_valid(self, line_number: int) -> bool:
"""Checks if the specified line validly follows from its justificatioms.

Parameters:
line_number: number of the line to check.

Returns:
If the specified line is justified as an assumption, then *~True"
if the formula justified by this line is an assumption of the
current proof, ~“False ~ otherwise. Otherwise (i.e., if the
specified line is justified as a conclusion of an inference rule),
“"True”” if the rule specified for that line is one of the allowed
inference rules in the current proof, and it has a specialization
that satisfies all of the following:

1. The conclusion of that specialization is the formula justified by
that line.
2. The assumptions of this specialization are the formulas justified
by the lines that are specified as the assumptions of that line
(in the order of their numbers in that line), all of which must
be previous lines.
nnn
assert line_number < len(self.lines)
\_ # Task 4.6b Y

Hint: Use the rule_for_line() method that you have just implemented.

c. Finally, implement the missing code for the method 'is_valid()' of class Proof,
which returns whether the proof is a valid proof of the statement it claims to prove,
using the allowed inference rules.

/ [propositions/proofs.py)

class Proof:

def is_valid(self) -> bool:
"""Checks if the current proof is a valid proof of its claimed statement
via its inference rules.

Returns:
“"True”~ if the current proof is a valid proof of its claimed
statement via its inference rules, ~“False ~ otherwise.
nnn
\_ # Task 4.6¢ Y,

Chapter 4 61 Draft; comments welcome



Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

4 Practice Proving

Before continuing with our agenda of reasoning about the formal deductive proofs that
we have just defined, it is worthwhile to first get comfortable in simply using them.
Here are two basic exercises in writing formal proofs using the Proof class. The
functions that you are asked to implement in these tasks are contained in the file
propositions/some_proofs.py. We warmly recommend to first try and figure out the
proof strategy with a pen and a piece of paper, and only then write the code that returns
the appropriate Proof object.

Task 7. Prove the following inference rule: Assumption: ‘(p&q)’; Conclusion: ‘(q&p)’;
via the following three inference rules:

o Assumptions: ‘x’; ‘y’; Conclusion: ‘(x&y)’
o Assumptions: ‘(x&y)’; Conclusion: ‘y’
o Assumptions: ‘(x&y)’; Conclusion: ‘x’

The proof should be returned by the function prove_and_commutativity (), whose missing
code you should implement.

( iti B
Ve kpropo51t10ns/some_proofs.py) ~

# Some inference rules that only use conjunction.

#: Conjunction introduction inference rule

A_RULE = InferenceRule([Formula.parse('x'), Formula.parse('y')],
Formula.parse(' (x&y)'))

#: Conjunction elimination (right) inference rule

AE1_RULE = InferenceRule([Formula.parse('(x&y)')],Formula.parse('y'))

#: Conjunction elimination (left) inference rule

AE2_RULE = InferenceRule([Formula.parse('(x&y)')],Formula.parse('x'))

def prove_and_commutativity() -> Proof:
"""Proves '(q&p)' from '(p&q)' via A_RULE’, “AE1_RULE", and ~AE2_RULE".

Returns:
A valid proof of '(qg&p)' from the single assumption '(p&q)' via the
inference rules “A_RULE", “AE1_RULE", and “AE2_RULE".

\\ # Task 4.7 J/

The next and final task requires some more ingenuity. It focuses on inference rules that
only involve the implies operator, and uses the following three inference rules, which in
the following chapters will end up being part of our “chosen” set of inference rules (which,
as we will see in Chapter 6, suffice for proving all sound inference rules):

MP: Assumptions: ‘p’; ‘(p—q)’; Conclusion: ‘q’
I1: (Assumptions: none;) Conclusion: ‘(q—(p—q))’
D: (Assumptions: none;) Conclusion: ‘((p—(q—r))—((p—q)—(p—1)))’

These inference rules, alongside the rule that you are asked to prove in the next task, are
defined in the file propositions/axiomatic_systems.py.”

"You will not be asked to implement anything in this file throughout this book.

Chapter 4 62 Draft; comments welcome



Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

e . - - N
/ kprop051t10ns/ax1omat1c_systems.py) \

# Axiomatic inference rules that only contain implies

#: Modus ponens / implication elimination
MP = InferenceRule([Formula.parse('p'), Formula.parse('(p->q)')],
Formula.parse('q'))
#: Self implication
I0 = InferenceRule([], Formula.parse('(p->p)'))
#: Implication introduction (right)
I1 = InferenceRule([], Formula.parse('(q—>(p->9))"))
#: Self-distribution of implication
\? = InferenceRule([], Formula.parse(' ((p->(q->r))->((p->q)->(p->r)))"')) )

Task 8. Prove the following inference rule via the inference rules MP, I1, and D:
I0: (Assumptions: none;) Conclusion: ‘(p—p)’

The proof should be returned by the function prove_I0(), whose missing code you should
implement.

( iti B
Ve kproposrc1ons/some_proofs.pyJ ~

def prove_IO() -> Proof:
"""Proves “I0° via "MP°, “I1°, and 'D".

Returns:
A valid proof of "IO° via the inference rules "MP", "I1°, and "D°.

\\ # Task 4.8 J/

Hint: Start by using the rule D with ‘(p—p)’ substituted for ‘q" and with ‘p’ substituted
for ‘v’ Notice that this would give you something that looks like ‘(¢p—(p—(p—p)))’. Now
try to extract the required ‘(p—p)’ using the rules MP and I1.

5 The Soundness Theorem

Let us emphasize again what should be clear up to this point: the validity of a proof is a
purely syntactic matter. However at this point we are ready for the first relation between
the syntactic world of proofs and the semantic world of truths: any inference rule that is
provable via sound inference rules must be sound, or equivalently, any conclusion that is
provable, via sound inference rules, from true assumptions must be true:

Theorem (The Soundness Theorem for Propositional Logic). Any inference rule that is
provable via (only) sound inference rules is itself sound as well. That is, if R contains

only sound inference rules, and if AFgr ¢, then A |= ¢.

In fact, this trivial-yet-magical theorem provides the basic justification for the whole
concept of Mathematics: proving something to be convinced that it is true. Otherwise,
there would have been no point in proving anything! This theorem also makes it clear why
we will always only allow using sound inference rules in our proofs, as otherwise we might
prove claims that are wrong.

The following two tasks prove the Soundness Theorem. The functions that you are
asked to implement in these tasks are contained in the file propositions/soundness.py.
Our first order of business is to tackle the use of specializations in a proof: recall that a

Chapter 4 63 Draft; comments welcome



Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

proof that uses a set R of inference rules is allowed to use, in every line, any specialization
of any rule in R rather than just these rules verbatim. This turns out not to be an
issue, since if we start with any sound inference rule like the one having assumption ‘x’
and conclusion ‘~~x’; and then “plug into z” any formula, for example ‘(p&q)’, then we
get a sound specialization: the inference rule having assumption ‘(p&q)’ and conclusion
‘~~(p&q)’. The reason for this is that had there been a counterexample to the specialized
inference rule, then it would directly yield a counterexample to the original inference rule
as well. The following task makes this explicit.

Task 9 (Programmatic Proof of the Specialization Sound-
ness Lemma). Implement the missing code for the function
rule_nonsoundness_from_specialization_nonsoundness(general,

specialization, model), which takes an inference rule, a specialization of this
rule, and a model that is a counterexample to the soundness of this specialization, and
returns a model that is a counterexample to the soundness of the general inference rule.

( £ 2
Ve Lproposn:lons/soundness.pyj ~

def rule_nonsoundness_from_specialization_nonsoundness(
general: InferenceRule, specialization: InferenceRule, model: Model) \
—> Model:
"""Demonstrated the non-soundness of the given general inference rule given
an example of the non-soundness of the given specialization of this rule.

Parameters:
general: inference rule to the soundness of which to find a
counterexample.

specialization: non-sound specialization of “general”.
model: model in which “specialization”™ does not hold.

Returns:
A model in which “general” does not hold.
nnn
assert specialization.is_specialization_of (general)
assert not evaluate_inference(specialization, model)

\\ # Task 4.9 J/

Guidelines: This function will be tested on inference rules with many variable names, so
iterating over all models to find a model to return (similarly to your implementation of
is_sound_inference()) is not an adequate solution strategy (and more importantly, does
not programmatically prove what we have set out to prove). Instead, try to understand
how to use the given model to find a suitable model to return.

Your solution to Task 9 proves the following lemma:

Lemma (Specialization Soundness). Every specialization of a sound inference rule is itself
sound as well.

Once we have this lemma under our belt we can proceed to prove the Soundness The-
orem. Assume by way of contradiction that we have a (valid) proof that starts with a set
of assumptions and proves a conclusion that is not (semantically) entailed by them. If we
look at any model that purports to be a counterexample to this proved inference rule then
we can obtain from it a counterexample to one of the inference rules that are used in the
proof. Which one? Look at the sequence of lines of the proof. In the beginning of the proof
we have assumptions that evaluate to True in the model and at the end of the proof we

Chapter 4 64 Draft; comments welcome



Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

have a conclusion that evaluates to False in this model (this is exactly what it means for
the model to be a counterexample to the proved inference rule). If we look at the first line
in the proof that evaluates to False in the model, it must have used an inference rule that
is not sound, since if it were sound, then by the Specialization Soundness Lemma so would
have been its specialization that justifies the line, and therefore a model that satisfies all of
the specialization’s assumptions (like our counterexample model) would have also satisfied
the specialization’s conclusion. The following task makes this explicit.

Task 10 (Programmatic Proof of the Soundness Theorem for Propositional Logic). Im-
plement the missing code for the function nonsound_rule_of nonsound_proof (proof,
model), which takes a valid proof and a model that is a counterexample to the statement
of the given proof, and returns a non-sound inference rule that is used in the given proof,
along with a model that is a counterexample to the soundness of the returned inference
rule.

( i 2
Ve Lprop051tlons/soundness.pyj ~

def nonsound_rule_of_nonsound_proof (proof: Proof, model: Model) -> \
Tuple[InferenceRule, Model]:
"""Finds a non-sound inference rule used by the given valid proof of a
non-sound inference rule, and demonstrates the non-soundness of the former
rule.

Parameters:
proof: valid proof of a non-sound inference rule.
model: model in which the inference rule proved by the given proof does
not hold.

Returns:
A pair of a non-sound inference rule used in the given proof and a model
in which this rule does not hold.
nnn
assert proof.is_valid()
assert not evaluate_inference(proof.statement, model)
\\ # Task 4.10 ,/

Guidelines: This function will be tested on proofs with inference rules with many variable
names, so running is_sound_inference() on each inference rule used in the given proof
is not an adequate solution strategy (and more importantly, does not programmatically
prove the Soundness Theorem). Instead, try to understand how to use the given model to
find a suitable rule (and model) to return.

The Soundness Theorem gives us a clear one-sided connection between the syntactic
notion of A - ¢ and the semantic notion of A |= ¢, i.e., that for some interesting sets of
inference rules (i.e., if R is a set of sound inference rules), the former implies the latter.
Our goal in the next two chapters will be to prove a converse called the Completeness
Theorem: that for some interesting sets of sound inference rules, the latter implies the
former as well.

Chapter 4 65 Draft; comments welcome






	1 Inference Rules
	2 Specializations of an Inference Rule
	3 Deductive Proofs
	4 Practice Proving
	5 The Soundness Theorem

