This material will be published by Cambridge University Press as:
Mathematical Logic through Python by Yannai A. Gonczarowski and Noam Nisan

This pre-publication version is free to view and download for personal use only. Not for re-distribution,
re-sale or use in derivative works. Please link to: www.LogicThruPython.org
© Yannai A. Gonczarowski and Noam Nisan 2017-2021.

Chapter 5:
Working with Proofs

In the last chapter we introduced the syntactic notion of a formal deductive proof in
Propositional Logic and you wrote code that checked whether a given alleged proof is
indeed a syntactically valid proof. In this chapter we proceed to mathematically analyze
such syntactic formal proofs, and prove theorems about formal proofs. Notice the two very
different uses of “proof” in the last sentence: in “proving theorems. ..,” the meaning is the
usual mathematical notion of presenting a mathematically convincing, but not syntactically
formal, argument of correctness; in “...about formal proofs” we mean syntactically formal
propositional-logic proofs. The former is usually done in mathematical language but in
this book will be achieved—as we have done so far—by writing Python programs with
the claimed functionality, while the latter are usually viewed as mathematical objects
(formally, strings of symbols), and we will use Python objects of the class Proof (which
you implemented in the previous chapter), handled by said programs, to represent them.
Disambiguating these two very different notions of “proof” by defamiliarizing them from
what we intuitively grasp as a proof, turning one of them into “programming” and the
other into “object of class Proof,” is at the heart of the pedagogical approach of this
book, and we hope that it will help avoid the confusion that is sometimes stirred by this
ambiguity and by our intuition of what a proof is.

While one of our long-term goals in this book is to be able to completely formalize
mathematically convincing proofs of the former kind as syntactically formal proofs of the
latter kind, and thus to explain why there is in fact no ambiguity here and that both are
called “proof” for a good reason, this will have to wait for the stronger Predicate Logic
studied in the second part of this book. For now, we are happy with using “regular” mathe-
matics (or programming) to prove claims regarding our formal syntactic propositional-logic
proofs (or equivalently, the corresponding Proof objects).

1 Using Lemmas

Recall that each of our formal proofs has a well-defined set of inference rules that it can
use, and each step (line) in the proof is confined to applying one of these rules. In “regular”
mathematics we often abstract away a sub-argument as a lemma, prove the lemma once,
and from that point allow ourselves to continue using the lemma as an additional inference
rule without needing to reprove it every time that we use it in some other proof. In fact, the
way that Mathematics progresses is exactly by proving a richer and richer set of lemmas
and theorems, all of them to be used “as inference rules” later on at will. This seems to be
such a basic element of mathematical reasoning, that one may well expect such a capability
of proving lemmas and then using them to be an integral part of our definition of formal
proofs (just as high-level programming languages have, as an integral part of the definition
of the language, the ability to implement and then use functions and methods). As we
will now see, we do not need to define this capability, and in fact having the capability

67 Draft; comments welcome

www.LogicThruPython.org

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

of defining lemmas is only for the human convenience of writing proofs, while our formal
proofs can mimic this ability without having it be part of the definition. (To some extent,
this is similar to machine languages often not having any notion of a procedure or function
call, and yet being able to implement that functionality when higher-level languages are
compiled into such machine languages.)

The functions that you are asked to implement in this section are contained in the file
propositions/proofs.py. The first thing that we have to verify is that if some lemma is
proven, then specializations of that lemma can also be proven. In “regular” mathematics
we take this as a triviality of course: every first-year Mathematics or Computer Science
student has at some point applied a lemma whose statement begins with “for any function
f7 to a specific function g, treating both the assumptions and the conclusion of the lemma
as if they were originally phrased for this specific g rather than for f. But, once we have
limited ourselves to formal proofs of the very specific form defined in the previous chapter,
we need to show that this property still holds for this specific form of formal proofs.

Task 1 (Programmatic Proof of the Specialization Provability Lemma). Implement the
missing code for the function prove_specialization(proof, specialization), which
takes a (valid) deductive proof of some inference rule, and returns a deductive proof of the
given specialization of that rule, via the same inference rules.

(iti B
Ve kprop051t10ns/proofs.pyj ~

def prove_specialization(proof: Proof, specialization: InferenceRule) -> Proof:
"""Converts the given proof of an inference rule to a proof of the given
specialization of that inference rule.

Parameters:
proof: valid proof to convert.
specialization: specialization of the rule proven by the given proof.

Returns:
A valid proof of the given specialization via the same inference rules
as the given proof.

nnn

assert proof.is_valid()

assert specialization.is_specialization_of (proof.statement)

_ # Task 5.1 Y

Example: If proof is a proof of the inference rule having assumptions ‘(p|q)’, ‘(~p|r)” and
conclusion ‘(q|r)’, then specialization could be, e.g., the inference rule with assumptions
‘(x|p)’, ‘(~x|(y&=z))’ and conclusion ‘(p|(y&z)).

Hint: Start by using the specialization_map() method of class InferenceRule to get
the map that specializes the rule that proof proves into specialization.

Your solution to Task 1 proves the following lemma:

Lemma (Specialization Provability). Let R be a set of inference rules. Every specialization
of every lemma that is provable via R is itself provable via R as well.

With the above lemma in hand, we are now ready to show that the formal proof system
that we defined in the previous chapter does indeed have the power to allow for gradual
building of lemmas and their usage—a result that we will formally state below and call
the Lemma Theorem.

Chapter 5 68 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Task 2 (Programmatic Proof of the Lemma Theorem). In this task you will implement the
missing code for the function inline proof (main_proof, lemma proof), which takes a
deductive proof main_proof of some inference rule via a set of inference rules R, takes a
deductive proof lemma_proof of one of the inference rules A € R (short for lemma) via a
set of inference rules R’ (where A ¢ R’ of course), and returns a deductive proof of the
inference rule proved by main_proof, however via the inference rules (R \ {\}) UR'.

a. First implement the missing code for the function _inline_proof once(
main_proof, line number, lemma_ proof), which replaces only a single instance
of the use of the given lemma, and thus the returned proof is allowed to use all of
the inference rules in R U R/, including A, but must use A one time less than in the
given proof.

/ [propositions/proofs.py] \

def _inline_proof_once(main_proof: Proof, line_number: int,
lemma_proof: Proof) -> Proof:
"""Inlines the given proof of a "lemma" inference rule into the given proof
that uses that "lemma" rule, eliminating the usage of (a specialization of)
that "lemma" rule in the specified line in the latter proof.

Parameters:
main_proof: valid proof to inline into.
line_number: number of the line in "main_proof”~ that should be replaced.
lemma_proof: valid proof of the inference rule of the specified line (an
allowed inference rule of “main_proof’).

Returns:
A valid proof obtained by replacing the specified line in “main_proof"
with a full (specialized) list of lines proving the formula of the
specified line from the lines specified as the assumptions of that line,
and updating justification line numbers specified throughout the proof
to maintain the validity of the proof. The set of allowed inference
rules in the returned proof is the union of the rules allowed in the two
given proofs, but the "lemma" rule that is used in the specified line in
"main_proof” is no longer used in the corresponding lines in the
returned proof (and thus, this "lemma" rule is used one less time in the
returned proof than in “main_proof™).

nnn

assert main_proof.is_valid()

assert line_number < len(main_proof.lines)

assert main_proof.lines[line_number].rule == lemma_proof.statement
assert lemma_proof.is_valid()
_ # Task 5.2a Y,

Guidelines: Implement the easiest implementation, which does not generate a proof
with a minimal number of lines but does avoid a lot of clutter, by returning a proof
that contains three batches of lines:

1. All the lines of proof up to line line_number-1, unmodified.

2. All the lines of a proof of the specialization (of the lemma) that is used in line
line_number of proof, only with the following two modifications:

o All line numbers justifying assumptions of specializations that are used in
this batch of lines should be shifted by 1ine number.

Chapter 5 69 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

e Each line that corresponds to any assumption of the proof of the special-
ization that is not also an assumption of proof should be modified by
adding an appropriate rule and an appropriate assumption list to that line
(these can simply be copied from the line whose number is used in line
line_number of proof to justify the corresponding assumption).

3. All the lines of proof from line line_number+1 onward, modified so that all
line numbers greater than or equal to 1ine number that justify assumptions of
specializations are shifted by the same appropriate number.

b. Now you can implement the function inline proof (main_proof, lemma_proof)
by using the above repeatedly, until all uses of the given lemma in the original proof
are eliminated.

(i td B
Ve kproposnlons/proofs.pyj ™

def inline_proof (main_proof: Proof, lemma_proof: Proof) -> Proof:
"""Inlines the given proof of a "lemma" inference rule into the given proof
that uses that "lemma" rule, eliminating all usages of (any specializations
of) that "lemma" rule in the latter proof.

Parameters:
main_proof: valid proof to inline into.
lemma_proof: valid proof of one of the allowed inference rules of
“main_proof".

Returns:
A valid proof obtained from “main_proof™ by inlining (an appropriate
specialization of) “lemma_proof’ in lieu of each line that specifies the
"lemma" inference rule proved by ~lemma_proof™ as its justification. The
set of allowed inference rules in the returned proof is the union of the
rules allowed in the two given proofs but without the "lemma" rule
proved by "“lemma_proof’.

nnn

assert main_proof.is_valid()

assert lemma_proof.is_valid()

_ # Task 5.2b)

Your solution to Task 2 proves the following theorem, which formalizes the fact that
while we have not explicitly allowed the usage of lemmas in our definition of a deductive
proof, this is in fact not required for us to be able to use them (for our great convenience!):

Theorem (The Lemma Theorem). If an inference rule p is provable via a set of inference
rules R U{A}, and if X is provable via R, then p is provable via only the set R.

2 Modus Ponens

Suppose that you have a mathematical proof—in “regular mathematics”—of some conclu-
sion ¢ from some assumption ¢. Outside the Logic classroom we may say that this proves
that “¢ implies ¢/”"—which in the Logic classroom we formalize as ‘(¢ — 1)’ However, no-
tice that in our logical formalization, a proof of ¢ from the assumption ¢, i.e., of {¢} - 1),
is formally different than a proof of the implication, i.e., of ‘(¢—1)’. Once we fix the set
R of allowed inference rules, {¢} I 1) means that there is a valid proof of the formula 1)

Chapter 5 70 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

from the single assumption ¢ (via R) while - ‘(¢—1))" means that there is a valid proof
of the single formula ‘(¢—1)’ from no assumptions (again, via R).

Our next order of business on our “working with proofs” agenda is understanding and
formalizing the connection between these two notions, and indeed reaching a state of affairs
where we can syntactically move freely between the two notions, as our mathematical
intuition dictates we should be able to, and as will be very convenient for us to do when
we prove the Completeness Theorem for Proposition Logic in the next chapter. Before
proceeding with the syntactic issues of proofs, let us underscore this intuition using an
analogous semantic question: what is the relation between {¢} = ¢ and = ‘(¢p—1)’? Here
the answer is that these two are equivalent: {¢} = ¢ (i.e., ¢ entails 1, or equivalently, the
rule having assumption ¢ and conclusion v is sound) means that in every model in which
¢ holds, so does 1. But this exactly means that the formula ‘(¢—1)’ is a tautology, i.e.,
that = ‘(¢p—).

So we now return to the syntactic question of {¢} F ¢ versus F ‘(¢—1)). This sec-
tion will discuss the “easy” direction of the desired equivalence: that if - ‘(¢—1))" then
{¢} F 1. The next section will discuss the “harder” converse direction: that if {¢} F ¥
then F ‘(¢p—1))’, which is called the Deduction Theorem. In each of these two direc-
tions we will find sufficient conditions on the set of allowed inference rules, R, that ensures
the desired implication. Our final fixed set of allowed inference rules—our axiomatic
system—which will be presented in the next chapter, will naturally satisfy both sets of
conditions, and so for that set of inference rules we will indeed have the desired equivalence.

The only condition on our set of inference rules R that we require for the “easy di-
rection” is that it contains the simple inference rule called Modus Ponens, or MP for
short, which is one of the most natural and basic inference rules, already known in Ancient
Greece. You were already briefly introduced to this inference rule in one of the tasks in
the previous chapter.

Modus Ponens (MP): Assumptions: ‘p’, ‘(p—q)’; Conclusion: ‘q’

(. - - N
/ kprop051t10ns/aX1omat1c_systems.py) \

Axiomatic inference rules that only contain implies

#: Modus ponens / implication elimination
MP = InferenceRule([Formula.parse('p'), Formula.parse('(p->q)')],
Formula.parse('q'))

_ 5 Y,

It is straightforward to verify that MP is indeed sound, and your implementation of
is_sound_inference() has in fact already done so: one of the ways in which we have
tested it is by making sure that it successfully verifies the soundness of MP.

Using MP, we can immediately see the easy direction of the desired equivalence, that
if F ‘(¢p—1)’ then {¢} F 1: To create a proof of ¢ from {¢}, given proof for ‘(¢p—1))’,
take the given proof, append an assumption line ¢ (which is now is indeed an assumption),
and directly apply MP to the last two lines (i.e., to ¢ and to ‘(¢p—)’) to deduce . This
simple technique continues to holds even regardless of any other assumptions that the
original proof of ‘(¢—1)’ uses. (These assumptions are simply used by the new proof as
well.) This proves the following lemma, which states the “easy direction” of the equivalence
that we are after:

Lemma. Let R be a set of inference rules that includes MP, let A be an arbitrary set of for-
mulas, and let ¢ and v be two additional formulas. If Abg ‘(¢—1), then AU {p} Fr 9.

Chapter 5 71 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Once we have MP at our disposal, we can “replace” a desired inference rule that has
an assumption ¢ (called the antecedent) and conclusion ¢ (called the consequent) by
the assumption-less inference rule conclusion ‘(¢—1)’. Thus, for example, if we want our
axiomatic system to be able to (validly) deduce ‘(¢—1))" from ‘@)’ then we will just in-
troduce the assumptionless inference rule ‘(q—(p—q))’ that will allow us to make this
deduction using MP. We can also similarly “encode” an inference rule with more than one
assumption. For example, we can “encode” an inference rule with two assumptions ¢, ¢
and conclusion ¢ by the assumptionless inference rule with conclusion ‘(¢;—(¢p2—1)))’ that
will allow us to perform the deduction of the encoded inference rule using two invocations!
of MP. Thus, for example, if we want to be able to deduce ‘@0’ from the two assumptions
‘(¢p—1)” and ‘(~p—1)’, then the assumptionless inference rule ‘((q—p)—(~q—p)—p))’
will do the trick. More generally, we could encode any inference rule with any number
of assumptions ¢, ..., ¢, and conclusion ¢ by the assumptionless inference rule with con-
clusion ‘(¢1—(pa—- -+ (¢p—E)--+))" (similarly to the discussion on semantics above, the
latter rule is sound if and only if the former one is) without losing any “proving power” as
long as we have MP at our disposal. As you will see in the next chapter, in our axiomatic
system, MP will be the only inference rule that has a nonempty set of assumptions, and
all other inference rules will be assumptionless ones (this will be important for technical
reasons, as you will see below) that in fact “encode” various inference rules that have one
or two assumptions.

The following task mechanizes the process of making deductions using such encoded
rules and MP. The functions that you are asked to implement in the remainder of this
chapter are contained in the file propositions/deduction.py unless otherwise noted.

Task 3.

a. Start by implementing the missing code for the function prove_corollary(
antecedent_proof, consequent, conditional), which takes a proof of some “an-
tecedent” formula ¢ from some assumptions, a desired consequent v, and an assump-
tionless inference rule conditional of which ‘(¢p—1))’ is a specialization, and returns
a proof of ¢ from the same assumptions, via the same inference rules as well as MP
and conditional.

(iti i 2
/ kproposn:lons/deductlon.py) \

def prove_corollary(antecedent_proof: Proof, consequent: Formula,
conditional: InferenceRule) -> Proof:
"""Converts the given proof of a formula ~antecedent” to a proof of the
given formula "consequent” by using the given assumptionless inference rule
of which '(antecedent’->consequent’)' is a specialization.

Parameters:
antecedent_proof: valid proof of “antecedent’.
consequent: formula to prove.
conditional: assumptionless inference rule of which the assumptionless
inference rule with conclusion '(antecedent’ -> consequent’)' is a
specialization.

Returns:
A valid proof of “consequent® from the same assumptions as the given
proof, via the same inference rules as the given proof and in addition
"MP® and “conditional”.

1Similarly to the last part of your proof of I0 in the previous chapter.

Chapter 5 79 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

assert antecedent_proof.is_valid()
assert InferenceRule([],
Formula('->', antecedent_proof.statement.conclusion,
consequent)) .is_specialization_of (conditional)
Task 5.3a

b. Now, implement the missing code for the slightly more complex variant function
combine_proofs(antecedentl proof, antecedent2_ proof, consequent,
double conditional), which takes two proofs of two “antecedent” formulas
¢1 and @9, both from the same? assumptions and via the same inference rules, a
desired consequent v, and an assumptionless inference rule double_conditional
of which ‘(¢1—(pa—1)))’ is a specialization, and, as before, returns a proof of ¢ from
the same assumptions, via the same inference rules as well as MP and conditional.

/ [propositions/deduction.py]

def combine_proofs(antecedentl_proof: Proof, antecedent2_proof: Proof,
consequent: Formula, double_conditional: InferenceRule) -> \
Proof:
"""Combines the given proofs of two formulas “antecedentl” and “antecedent2”
into a proof of the given formula "“consequent”™ by using the given
assumptionless inference rule of which
' (Cantecedent1’->antecedent2 -> consequent’)' is a specialization.

Parameters:

antecedentl_proof: valid proof of “antecedentl.

antecedent2_proof: valid proof of “antecedent2” from the same
assumptions and inference rules as ~antecedentl_proof".

consequent: formula to prove.

double_conditional: assumptionless inference rule of which the
assumptionless inference rule with conclusion
'(Tantecedentl” ->"antecedent2 -> consequent’)' is a specialization.

Returns:
A valid proof of “consequent® from the same assumptions as the given
proofs, via the same inference rules as the given proofs and in addition
"MP® and “double_conditional”.
nnn
assert antecedentl_proof.is_valid()
assert antecedent2_proof.is_valid()
assert antecedentl_proof.statement.assumptions ==
antecedent2_proof.statement.assumptions
assert antecedentl_proof.rules == antecedent2_proof.rules
assert InferenceRule(
[1, Formula('->', antecedentl_proof.statement.conclusion,
Formula('->', antecedent2_proof.statement.conclusion, consequent))
) .is_specialization_of (double_conditional)
_ # Task 5.3b)

2We require that the assumptions of the two given proofs are exactly the same and in the same order
for simplicity and since this is what we will use, even though the same solution would also work with no
requirements on the assumptions, and only returning a proof from all the assumptions that are used in
any of the given proofs.

Chapter 5 73 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

3 The Deduction Theorem

We now move to the hard part of the equivalence: showing that if {¢} F v then F ‘(¢—1)’,
and even more generally, that for any set of additional assumptions A, if AU{¢} - ¢ then
A F ‘(¢p—1). This result is called the Deduction Theorem, it will help us in many
proofs, and its proof is a significant milestone toward the goal of the first part of this
book. We will prove this theorem for any set R of inference rules that also contains, in
addition to MP, the following three axioms (we will use the term axioms to refer to the
assumptionless inference rules that will be part of our axiomatic system—our set of allowed
inference rules), to which you were also already introduced in the previous chapter:

10: ‘(p—p)’
I1: “(q—(p—q))’

D: ‘((p—(q—r1))=((p—a)—(p—r1)))’

(s . X A
/ kprop051t10ns/ax1omat1c_systems.py) \

Axiomatic inference rules that only contain implies

#: Self implication

I0 = InferenceRule([], Formula.parse('(p->p)'))

#: Implication introduction (right)

I1 = InferenceRule([], Formula.parse('(q->(p->q))'))

#: Self-distribution of implication

D = InferenceRule([], Formula.parse('((p—->(q->r))->((p->q)->(p->r)))"'))

\

J

It is straightforward to verify that these three axioms (and the additional axioms that
will be presented in the remainder of this chapter and in the next chapter) are sound, and
once again, your implementation of is_sound inference() has in fact already done this:
one of the ways in which we have tested it is by making sure that it successfully verifies
the soundness of all of these axioms.

Recall that in the previous chapter you have already proved 10 via {MP,I1,D}, so
by the Lemma Theorem, anything that is provable via {MP,10,11,D} is in fact provable
without 10, via only {MP,11,D}. So, we allow ourselves to also use 10 just for convenience,
even though this is in fact not really needed.

We will place one additional restriction on our set R of inference rules: that all of these
inference rules, except MP, have no assumptions. In the strictest technical sense, this
will be sufficient for our purposes since from this point on, our sets of inference rules will
always have this property. On a more conceptual level, since we have MP at our disposal,
as discussed above we can always, instead of adding some inference rule to our axiomatic
system, add instead an assumptionless inference rule that “encodes” it without losing any
“proving power.”

Let us think about what we have to do to show that if AU{¢} F v then A+ ‘(¢p—1))’.
We are given a proof of ¢ from an assumption ¢, as well as some other assumptions A,
and need to create a new proof of the conclusion ‘(¢—1)’ from only the assumptions in
A. How can we do this? The idea is to go over the original proof line by line, and if the
1th line of the original proof contains a formula &;, then to add to our new proof a line
containing ‘(¢p—¢;)’ instead. In terms of the conclusion, this is exactly what we want since
the last line of the original proof is ¢ and therefore the last line of the new proof will be

Chapter 5 74 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

‘(p—1))’, as needed. The problem is that the new list of lines need not really constitute
a valid proof: it’s quite possible that none of these lines is an assumption or follows from
previous ones using one of the allowed inference rules. The point is that, assuming that we
have the required inference rules at our disposal, we will be able to add some “intermediate
lines” in between each pair of line of the new proof, to turn it into a valid proof. Let us
consider which kinds of lines we can have in the original proof, and see how we can deal
with each of them:

o It may be that the line &; is one of the assumptions that also remains an assumption
in the new proof (i.e., § € A). The problem is that our strategy requires us to
deduce a line with ‘(¢p—¢;)’ while only &; is an allowed assumption. Conveniently, it
is possible to deduce ‘(¢p—¢;)’ from &; via I1 along with MP (hint: take inspiration
from the implementation of prove_corollary()).

o It may be that &; is exactly the assumption ¢ that we are no longer allowed to use in
the new proof. Our strategy calls for deducing a line with ‘(¢—¢;)’, which in this case
is ‘(¢p—¢)". Conveniently, 10 allows to deduce this without using ¢ as an assumption.

o It may be that & is deduced by MP from two previous lines containing some formu-
las & and &,. We need to deduce ‘(¢—¢;)’, but can rely on the fact that we have
already deduced ‘(¢p—¢;)” and ‘(¢—&)’ in the new proof (in the lines correspond-
ing to the lines containing §; and & in the original proof). Conveniently, a clever
usage of D along with MP allows us to deduce this (hint: take inspiration from the
implementation of combine_proofs()).

o The last option is that & is deduced by some inference rule that is not MP. As we
assume that all inference rules except MP have no assumptions, &; is therefore (the
conclusion of) a specialization of an allowed assumptionless inference rule. So, we
can deduce &; in the new proof as well, and we conveniently already know how to
deduce ‘(¢p—&;)’ from it via 11 along with MP.

You are now asked to implement the above proof strategy.

Task 4 (Programmatic Proof of the Deduction Theorem for Propositional Logic). Imple-
ment the missing code for the function remove_assumption(proof). This function takes
as input a deductive proof of a conclusion ¥ from a nonempty list of assumptions via in-
ference rules that, except for MP, have no assumptions. The function returns a deductive
proof of ‘(¢ — 1)’, where ¢ is the last assumption of the given proof, from the same
assumptions except for ¢, via the same inference rules as well as MP, 10, I1, and D.

(iti i B
/ kproposn:lons/deductlon.py) \

def remove_assumption(proof: Proof) -> Proof:
"""Converts the given proof of some “conclusion”™ formula, the last
assumption of which is an assumption “assumption™, to a proof of
' (T assumption®-> conclusion’)' from the same assumptions except
“assumption” .

Parameters:
proof: valid proof to convert, with at least one assumption, via some
set of inference rules all of which have no assumptions except
perhaps "MP".

Returns:
A valid proof of '(assumption®->conclusion)' from the same

Chapter 5 75 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

assumptions as the given proof except the last one, via the same
inference rules as the given proof and in addition "MP", “IO~, “I1°,
and "D°.
nnn
assert proof.is_valid()
assert len(proof.statement.assumptions) > O
for rule in proof.rules:
assert rule == MP or len(rule.assumptions) ==

_ # Task 5.4 Y

Your solution to Task 4 proves the final, hard direction, of the Deduction Theorem:

Theorem (The Deduction Theorem for Propositional Logic). Let R be a set of inference
rules that includes MP, 11, and D, and may additionally include only inference rules with
no assumptions. Let A be an arbitrary set of formulas, and let ¢ and 1 be two additional
formulas. Then AU{¢} Fr ¢ if and only if Alg ‘(p—1).

Recall that while we allowed using also I0 in Task 4, since you have already shown in
the previous chapter that 10 is provable via {MP,I1,D}, then by the Lemma Theorem,
the statement of the Deduction Theorem need not assume (and indeed, does not assume)
that using 10 is allowed. The Deduction Theorem is an extremely useful tool for writing
proofs. Many results that are quite tedious to prove directly from the above (and other)
inference rules are easily proven using the Deduction Theorem. The final task of this
section demonstrates such a result.

Task 5. Prove the following inference rule: Assumptions: ‘(p—q)’, ‘(q—1)’; Conclusion:
‘(p—r1)’; via the inference rules MP, 10, I1, and D. The proof should be returned by the
function prove_hypothetical syllogism() in the file propositions/some_proofs.py,
whose missing code you should implement.

(iti B
Ve kpropos:.tlons/some_proofs.pyJ ~

#: Hypothetical syllogism
HS = InferenceRule([Formula.parse('(p->q)'), Formula.parse('(q->r)')],
Formula.parse(' (p—>1)"'))

def prove_hypothetical_syllogism() -> Proof:
"""Proves "HS® via "MP", “I0°, "I1°, and 'D°.

Returns:
A valid proof of "HS® via the inference rules "MP", IO, “I1°, and "D°.

\\ # Task 5.5 J/

Hint: Use the Deduction Theorem.

Indeed, while it is not very intricate to prove that ‘r’ holds given that ‘p’, ‘(p—q)’,
and ‘(q—r)” hold, proving the hypothetical syllogism above without using the Deduction
Theorem would have been more intricate and considerably less straightforward (even for
this simple example)—just examine the resulting proof that your solution returns!

4 Proofs by Way of Contradiction

A ubiquitous proof strategy throughout Mathematics is that of proof by way of contradic-
tion: to prove a formula ¢, we assume that its negation ‘~¢’ holds. Based on this contrived

Chapter 5 76 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

assumption we attempt to prove an “obvious contradiction,” for example that 1) holds even
though we know that ‘~¢/” holds. If we succeed in proving such an “obvious contradiction,”
then we deduce from this that our contrived assumption ‘~¢’ was flawed to begin with,
that is, that ¢ in fact holds. As it turns out, while this proof strategy seems at first glance
to be quite far from the “step by step” notion of deductive proofs that we have defined in
the previous chapter, the ability to prove by way of contradiction in fact, as we will see in
this section, follows from, and is one of the most profound consequences of, the Deduction
Theorem.

To formalize the notion of proof by way of contradiction, we have to start with a
syntactic definition of (proving) an “obvious contradiction.” We emphasize that we may
not resort to the semantic notion of a contradiction, which we have defined in Chapter 2
to be a formula that has no model, i.e., a formula whose negation is a tautology. (Indeed,
in the optional reading in Chapter 2, we discussed that the question of whether a given
formula is not a semantic contradiction is NP-complete—e.g., as hard as breaking any
cryptographic code (!)—so identifying any semantic contradiction as such is not in any way
an “obvious” thing to do.) The intuitive syntactic notion of an “obvious contradiction” is
the formula ‘F’, and intuitively we aim to show that if one can prove the formula ‘F’ from
some set of assumptions, then this uncovers an inconsistency in the set of assumptions.
In particular, if one manages to prove ‘F’ from ‘~¢’ as well as some other assumptions
(i.e., assume the negation of ¢ and reach an “obvious contradiction”), then one can prove
¢ directly from these assumptions (without ‘~¢’). For technical reasons, though, we will
wish to be able to work without the constant ‘F’ necessarily being part of our allowed
operators in the first part of the next chapter (more on that in that chapter), so instead
of taking ‘F’ to be our “obvious contradiction,” it will be more convenient to take the
negation of any of our axioms as our “obvious contradiction.” We will indeed do so, and
we encourage you to disambiguate the syntactic notion of proofs by way of contradiction
from the semantic notion of a contradiction by thinking about such proofs as proofs by
way of contradicting an axiom. This way of thinking about such proofs will continue
to be useful for us also in the second part of this book. (We will nonetheless continue to
use the term “proof by way of contradiction” as it is standard.) For concreteness, we will
take ‘~(p—p)’ (the negation of the axiom I0) as our “obvious contradiction.” While this
may seem a bit arbitrary, we will in fact momentarily show that the details of the negation
of which axiom is chosen do not really matter and all turn out to be equivalent. In fact,
we will give five definitions that are equivalent as long as our axiomatic system contains
the inference rules MP and 10, as well as the following (sound) inference rule:

I12: ‘(~p—(p—q))’

[propositions/axiomatic_systems .py]

Axiomatic inference rules for not (and implies)

#: Implication introduction (left)
I2 = InferenceRule([], Formula.parse('("p->(p->q))'))

Definition (Consistency). Let R be a set of inference rules that includes MP, 10, and 12,
and may additionally include only inference rules with no assumptions. A set of formulas
A is said to be (syntactically) inconsistent (with respect to R) if one of the following five
equivalent conditions holds:

Chapter 5 77 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

1. The formula ‘~(p—p)’ is provable (via R) from the assumptions A.

2. The negation of some axiom (assumptionless inference rule from R)? is provable from
the assumptions A.

3. There exists some formula ¢ such that both ¢ and ‘~¢’ are provable from the as-
sumptions A.

4. Every formula v is provable from the assumptions A.

5. The negation of every axiom (assumptionless inference rule from R) is provable from
the assumptions A.

A set of formulas that is not inconsistent is called consistent.

The above definition gives five equivalent syntactic definitions to the syntactic notion
of an inconsistency. The equivalence of the first definition to the third and fourth definitions
indeed shows that being able to prove ‘~(p—p)’ is a natural (and not arbitrary) definition
for an inconsistency of a set of assumptions. The equivalence of the first, second, and last
definitions indeed shows that there is nothing special about ‘~(p—p)’, in the sense that
everything from this point onward would hold just the same if we replaced ‘~(p—p)’ with
the negation of any other axiom. (Indeed, by the above, if we can prove the negation of
any single axiom then we can prove ‘~(p—p)’, and if we can prove ‘~(p—p)’ then we can
prove the negation of every other axiom.)

Let us see why these five definitions are equivalent: The fourth definition trivially
implies the fifth one, the fifth one trivially implies the first one, and the first one trivially
implies the second one. The second definition implies the third one since every axiom can
be trivially proven, and thus if we take ¢ to be the axiom whose negation we can prove,
then can prove both ¢ and ‘~¢’. It remains to show that the third definition implies the
fourth one, which you will do in the next task using I2.

Task 6. Implement the missing code for the function proof from_ opposites(
proof _of affirmation, proof of_negation, conclusion). This function takes as in-
put a proof of some formula ¢ and a proof of its negation ‘~¢’, both via the same infer-
ence rules and from the same assumptions (implying that these assumptions are incon-
sistent with respect to the used inference rules), and also takes as input some arbitrary
conclusion. The function returns a proof of conclusion from the same assumptions via
the same inference rules as well as MP and 12.

(1 ; 0
s Kpropos1t10ns/deduct10n.pyJ ~

def prove_from_opposites(proof_of_affirmation: Proof,
proof_of_negation: Proof, conclusion: Formula) -> \
Proof:
"""Combines the given proofs of a formula “affirmation™ and its negation
'"“affirmation”' into a proof of the given formula.

Parameters:
proof_of_ affirmation: valid proof of “affirmation’.
proof_of _negation: valid proof of '"“affirmation”' from the same

assumptions and inference rules of “proof_of_affirmation”.
conclusion: formula to prove.

3To avoid clutter, when we refer to an axiom as a formula, such as when talking about its negation, we
more precisely mean the formula that is the axiom’s conclusion (so “the negation of some axiom” more
precisely means “the negation of the conclusion of some axiom”).

Chapter 5 78 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Returns:
A valid proof of “conclusion”™ from the same assumptions as the given
proofs, via the same inference rules as the given proofs and in addition
"MP® and "I2°.
nnn
assert proof_of_affirmation.is_valid()
assert proof_of_negation.is_valid()
assert proof_of_affirmation.statement.assumptions ==
proof_of_negation.statement.assumptions
assert Formula('™', proof_of_affirmation.statement.conclusion) ==
proof_of_negation.statement.conclusion
assert proof_of_affirmation.rules == proof_of_negation.rules
_ # Task 5.6)

Hint: The function combine proofs() that you implemented in Task 3 can ease the usage
of the axiom I2.

Your solution to Task 6 concludes the proof of the following:
Lemma. The five definitions of inconsistency given above are indeed equivalent.

We are now ready to formally justify the validity of the notion of a proof by way of
contradiction. To do so, we will allow ourselves to use also the following additional (sound)
axiom:

N: ‘((~q—=~p)—=(p—q))’

[propositions/axiomatic_systems .py]

Axiomatic inference rules for not (and implies)

#: Converse contraposition
N = InferenceRule([], Formula.parse('((“q->"p)->(p->q))"'))

Task 7 (Programmatic Proof of the theorem on Soundness of Proofs by Way of Contra-
diction). Implement the missing code for the function prove_by_way_of contradiction(
proof), which takes a proof of ‘~(p—p)’ from some assumptions as well as from the nega-
tion ‘~¢’ of some formula, and returns a proof of the formula ¢ from these assumptions
(without ‘~¢’) via the same inference rules as well as MP, 10, I1, D, and N.

(it ; B
/ Kproposﬂslons/deductlon.pyJ \

def prove_by_way_of_contradiction(proof: Proof) -> Proof:
"""Converts the given proof of '~ (p->p)', the last assumption of which is an

assumption '““formula'', to a proof of “formula® from the same assumptions
except '““formula®'.
Parameters:
proof: valid proof of '~ (p->p)' to convert, the last assumption of which
is of the form '““formula®', via some set of inference rules all of

of which have no assumptions except perhaps "MP".

Returns:
A valid proof of “formula® from the same assumptions as the given proof
except the last one, via the same inference rules as the given proof and
in addition “MP", “IO", “I1°, D", and "N'.

nnn

assert proof.is_valid()

Chapter 5 79 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

assert proof.statement.conclusion == Formula.parse('” (p->p)')
assert len(proof.statement.assumptions) > O
assert proof.statement.assumptions[-1].root == '~
for rule in proof.rules:
assert rule == MP or len(rule.assumptions) ==
Task 5.7

Hint: Use the Deduction Theorem (remove_assumption(proof)) and then the axiom N.

By your solution to Task 7, proving by way of contradiction (which would have indeed
been more aptly named proving by way of contradicting an axiom) is a sound proof
technique. Indeed, this is one of the most profound corollaries of the Deduction Theorem.
What about the other direction? If we can prove ¢ from A, does this imply that AU{‘~¢’}
is inconsistent? This turns out to trivially hold since if A F ¢, then certainly AU{‘~¢’} - ¢,
but also certainly AU {‘~¢’} F ‘~¢’. So we have proven not only that proving by way of
contradiction is a sound proof technique, but in fact that anything that is provable can be
proven by way of contradiction:

Theorem (Soundness of Proofs by Way of Contradiction). Let R be a set of inference
rules that includes MP, 11, D, and N,* and may additionally include only inference rules
with no assumptions. Let A be an arbitrary set of formulas, and let ¢ be an additional
formula. Then AU {‘~@’} is inconsistent with respect to R if any only if Atx ¢.

4While we have actually proven this only for a set of inference rules that additionally includes also I0
and 12, you have already shown that I0 is provable via MP, I1, and D, and we will see in the next chapter
that also 12 is provable via MP, I1, and D, so by the Lemma Theorem we already phrase the theorem
accordingly.

Chapter 5 80 Draft; comments welcome

	1 Using Lemmas
	2 Modus Ponens
	3 The Deduction Theorem
	4 Proofs by Way of Contradiction

