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Chapter 6:

The Tautology Theorem and the
Completeness of Propositional Logic

Recall from Chapter 4 the Soundness Theorem for Propositional Logic: any inference
rule that is provable (using any set of sound inference rules) is sound. In this chapter, in
which our analysis of Propositional Logic culminates, we will prove a converse of sorts:
we will show that our proof system, with a specific small axiomatic set of sound inference
rules—our axiomatic system, which specifically contains Modus Ponens as well as few
axioms (assumptionless inference rules)—is complete, that is, can prove every sound
inference rule. Our first and main step is to state and prove the Tautology Theorem:
that every tautology is provable via our axiomatic system. Once we have that under our
belt, it will not be difficult to extend this and show that also every sound inference rule is
provable, i.e., that if some finite set of assumptions A entails a formula φ (i.e., if A |= φ)
then φ is indeed provable from A using our axiomatic system (i.e., A ` φ). Finally, we will
further extend this to infinite sets of assumptions, an extension which, due to its infinite
nature, we will obviously not prove in a programmatic way but rather using “regular”
mathematical reasoning. As we will see in the second part of this book, the Tautology
Theorem will also serve as a major building block of our proof of the pinnacle result of this
entire book: the Completeness Theorem for the richer Predicate Logic.

1 Our Axiomatic System
In the bulk of this chapter we will restrict ourselves to only allowing the logical operators
‘→’ and ‘~’, disallowing ‘&’, ‘|’, ‘T’, and ‘F’. As we have seen in Exercise 3, these two oper-
ators suffice for representing any Boolean function (i.e., synthesizing any truth table), and
indeed many Mathematical Logic courses restrict their definitions to only these operators
by either disallowing other operators completely, or treating other operators as shorthands
for expressions involving only these two operators (along the lines of the substitutions that
you implemented in Chapter 3). In the end of the chapter (in Section A) you will option-
ally see how the same results apply also to formulas that may use the other operators (‘|’,
‘&’, ‘T’, ‘F’, and even others), provided that we add a few appropriate additional axioms
to our axiomatic system.

Our axiomatic system—the set of inference rules that we will show to suffice for proving
any inference rule—contains all the inference rules that were required for the various tasks
of the previous chapter (MP, I0, I1, D, I2, and N), as well as a few additional axioms:

MP: Assumptions: ‘p’, ‘(p→q)’; Conclusion: ‘q’

I0: ‘(p→p)’

I1: ‘(q→(p→q))’
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D: ‘((p→(q→r))→((p→q)→(p→r)))’

I2: ‘(~p→(p→q))’

N: ‘((~q→~p)→(p→q))’

NI: ‘(p→(~q→~(p→q)))’

NN: ‘(p→~~p)’

R: ‘((q→p)→((~q→p)→p))’

propositions/axiomatic_systems.py

# Axiomatic inference rules that only contain implies

#: Modus ponens / implication elimination
MP = InferenceRule([Formula.parse('p'), Formula.parse('(p->q)')],

Formula.parse('q'))
#: Self implication
I0 = InferenceRule([], Formula.parse('(p->p)'))
#: Implication introduction (right)
I1 = InferenceRule([], Formula.parse('(q->(p->q))'))
#: Self-distribution of implication
D = InferenceRule([], Formula.parse('((p->(q->r))->((p->q)->(p->r)))'))

# Axiomatic inference rules for not (and implies)

#: Implication introduction (left)
I2 = InferenceRule([], Formula.parse('(˜p->(p->q))'))
#: Converse contraposition
N = InferenceRule([], Formula.parse('((˜q->˜p)->(p->q))'))
#: Negative-implication introduction
NI = InferenceRule([], Formula.parse('(p->(˜q->˜(p->q)))'))
#: Double-negation introduction
NN = InferenceRule([], Formula.parse('(p->˜˜p)'))
#: Resolution
R = InferenceRule([], Formula.parse('((q->p)->((˜q->p)->p))'))

#: Large axiomatic system for implication and negation, consisting of `MP`,
#: `I0`, `I1`, `D`, `I2`, `N`, `NI`, `NN`, and `R`.
AXIOMATIC_SYSTEM = frozenset({MP, I0, I1, D, I2, N, NI, NN, R})

It is straightforward to verify the soundness of each inference rule in the above ax-
iomatic system, and as already hinted in the previous chapter, your implementation of
is_sound_inference() has in fact already done so: one of the ways in which we have
tested it is by making sure that it successfully verifies the soundness of all of these infer-
ence rules.

Whenever we use the notation ` in this chapter without explicitly specifying the allowed
set R of inference rules (i.e., whenever we use ` rather than `R for some R), we will mean
with respect to the above axiomatic system as the allowed set of inference rules. This set
was chosen for ease of use in the tasks of this chapter. Other, smaller, axiomatic systems
that still give rise to complete proof systems, are also possible. For example, notice that
you have in fact already proven I0 via I1, D, and MP, so certainly by the Lemma Theorem
we can remove I0 from the above set without weakening its “proving power.” In fact,
it turns out (you will optionally show this in Section B in the end of this chapter) that
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the subset H = {MP, I1,D,N} of only four inference rules suggested by the 19th–20th

century German mathematician David Hilbert suffices for proving all the others in the
above axiomatic system. Thus, once we show that the above axiomatic system can prove
something, it follows by the Lemma Theorem that also Hilbert’s axiomatic system H can
do so.1 Thus, even though the tasks ahead allow using the full axiomatic system defined
above, we will state our theorems for H.

The full axiomatic system above was chosen as to directly match natural steps in the
proofs to come. Specifically, if there is a proof step where we will need to soundly deduce
some formula ψ from some other formula φ, then we have added to our axiomatic system
an axiom of which ‘(φ→ψ)’ is a specialization, which will allow us to directly derive ψ from
φ as required, using an application of MP. If there is a proof step where we will need to
soundly deduce some formula ψ from two other formulas φ1 and φ2, then we have added an
axiom on which ‘(φ1→(φ2→ψ))’ is a specialization to our axiomatic system. The functions
prove_corollary() and combine_proofs() that you have implemented in the previous
chapter will therefore be very useful in applying these axioms—these encoded inference
rules—in the corresponding proof steps.

The functions that you are asked to implement in this chapter are contained in the file
propositions/tautology.py unless otherwise noted.

2 The Tautology Theorem
We now start our journey towards proving a tautology. The first step takes a single model
(i.e., a single assignment of truth values to the variable names) and a formula φ that
evaluates to True in this model (a central example being a formula φ that is a tautology,
i.e., evaluates to True in any model), and proves the formula φ in this model. More formally,
for each variable name x with value True in the given model we take the assumption ‘x’
and for each variable name x with value False in this model we take the assumption ‘~x’;
from these assumptions (one for each variable name used in the formula), we wish to prove
the formula φ (using the full axiomatic system defined above).

Definition (Formula(s) Capturing Assignment). Given an assignment of a Boolean value b
to a variable name x, the formula that captures this assignment is the formula ‘x’ if b
is True and is the formula ‘~x’ if b is False. Given a model {x1 : b1, x2 : b2, . . . , xn : bn},
where each xi is a variable name and each bi is a Boolean value, the set of formulas that
captures this model is the set of the n formulas that capture the n assignments in the
model.

For example, the model {‘p’ : True, ‘q’ : False, ‘r’ : True} is captured by the set of
formulas {‘p’, ‘~q’, ‘r’}. Notice that this definition, while technically trivial, does achieve
a transformation from the semantic world of models to the syntactic world of formulas,
and as such is an important conceptual step in our proof of the Tautology Theorem. Now
suppose that we have a formula φ that evaluates to True in this model, such as ‘(p→r)’,
then our claim is that φ is provable, using our axiomatic system, from this set of formulas
as assumptions. If, on the other hand, φ evaluates to False in this model then our claim is
that we can prove its negation ‘~φ’, using our axiomatic system, from these assumptions.
Given such a model and formula φ, such a proof (of φ or of ‘~φ’) can with some care be
constructed recursively:

1In fact, it is actually possible to derive all of our axioms from the following single axiom, in addition
to MP: ‘(((((p→q)→(~r→~s))→r)→t)→((t→p)→(s→p)))’.
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• The base case is very simple since for a variable name x we already have the correct
formula (‘x’ if x evaluates to True, and ‘~x’ if x evaluates to False) in our set of
assumptions.

• If φ is of the form ‘(φ1→φ2)’ for some formulas φ1 and φ2, then:

– If φ has value True in the given model, then either φ1 has value False in
this model or φ2 has value True in it. In the former case we can recursively
prove ‘~φ1’, while in the latter we can recursively prove φ2. In the former case,
the axiom I2 allows us to use ‘~φ1’ to prove φ, and in the latter case the axiom
I1 allows us use φ2 to prove φ.

– Otherwise, φ has value False in the model, so both φ1 is True and φ2 is False in
the model, and so we can recursively prove both φ1 and ‘~φ2’. Now, the axiom
NI allows us to prove ‘~φ’ from these two.

• Finally, if φ is of the form ‘~ψ’ for some formula ψ, then:

– If φ evaluates to True, then ψ evaluates to False, so we can recursively prove
‘~ψ’ which is exactly φ, as needed.

– Otherwise, φ evaluates to False so ψ evaluates to True, so we can recursively
prove ψ, but our goal is to prove ‘~φ’, that is, ‘~~ψ’, which the axiom NN allows
us to prove from ψ.

The fact that the axioms I2, NI, and NN (and I1), which the above proof needs in order to
work, are in our axiomatic system is of course no coincidence: we have added these axioms
to our axiomatic system precisely to allow us to perform the above steps.

Task 1.

a. First, implement the missing code for the function formulas_capturing_model(
model), which returns the formulas that capture the given model.

propositions/tautology.py

def formulas_capturing_model(model: Model) -> List[Formula]:
"""Computes the formulas that capture the given model: '`x`' for each
variable name `x` that is assigned the value ``True`` in the given model,
and '˜`x`' for each variable name `x` that is assigned the value ``False``.

Parameters:
model: model to construct the formulas for.

Returns:
A list of the constructed formulas, ordered alphabetically by variable
name.

Examples:
>>> formulas_capturing_model({'p2': False, 'p1': True, 'q': True})
[p1, ˜p2, q]

"""
assert is_model(model)
# Task 6.1a

b. Now, implement the missing code for the function prove_in_model(formula,
model), which takes a propositional formula (which may only contain ‘→’ and ‘~’
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as operators) and a model, and returns a proof of either the formula (if it evaluates
to True in the given model) or its negation (if the given formula evaluates to False
in the given model) from the formulas that capture the given model as assumptions,
via our axiomatic system.

propositions/tautology.py

def prove_in_model(formula: Formula, model:Model) -> Proof:
"""Either proves the given formula or proves its negation, from the formulas
that capture the given model.

Parameters:
formula: formula that contains no constants or operators beyond '->' and

'˜', whose affirmation or negation is to prove.
model: model from whose formulas to prove.

Returns:
If the `formula` evaluates to ``True`` in the given model, then a valid
proof of `formula`; otherwise a valid proof of '˜`formula`'. The
returned proof is from the formulas that capture the given model, in the
order returned by `formulas_capturing_model(model)`, via
`AXIOMATIC_SYSTEM`.

Examples:
>>> proof = prove_in_model(Formula.parse('(p->q7)'),
... {'q7': False, 'p': False})
>>> proof.is_valid()
True
>>> proof.statement.conclusion
(p->q7)
>>> proof.statement.assumptions
(˜p, ˜q7)
>>> proof.rules == AXIOMATIC_SYSTEM
True

>>> proof = prove_in_model(Formula.parse('(p->q7)'),
... {'q7': False, 'p': True})
>>> proof.is_valid()
True
>>> proof.statement.conclusion
˜(p->q7)
>>> proof.statement.assumptions
(p, ˜q7)
>>> proof.rules == AXIOMATIC_SYSTEM
True

"""
assert formula.operators().issubset({'->', '˜'})
assert is_model(model)
# Task 6.1b

Your solution to Task 1 essentially2 proves the following lemma:

Lemma. Let φ be a formula that only uses the operators ‘→’ and ‘~’. If φ evaluates to True
in a given model M , then φ is provable via H from the set of formulas that captures M .
If φ evaluates to False in M , then ‘~φ’ is provable via H from the set of formulas that
captures M .

2That is, up to using our full axiomatic system rather than H. See Section B for why H indeed suffices.
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The above lemma implies, in particular, that if φ is a tautology, then we can prove it
from any set of assumptions that correspond to any model over all of the variable names
of φ. Our goal, though, is to show that a tautology is provable from no assumptions. We
now take an additional step towards this goal by showing how to reduce the number of
assumptions by one: how to combine proofs for two models that differ from each other by
the value of a single variable name, to eliminate any assumptions regarding that variable
name.
Task 2. Implement the missing code for the function reduce_assumption(
proof_from_affirmation, proof_from_negation). This functions takes as input two
proofs, both proving the same conclusion via the same inference rules, from almost the
same list of assumptions, with the only difference between the assumptions of the two
proofs being that the last assumption of proof_from_negation is the negation of the
last assumption of proof_from_affirmation. The function returns a proof of the same
conclusion as both proofs, from the assumptions that are common to both proofs (i.e, all
assumptions except the last one of each proof), via the same inference rules as well as MP,
I0, I1, D, and R.

propositions/tautology.py

def reduce_assumption(proof_from_affirmation: Proof,
proof_from_negation: Proof) -> Proof:

"""Combines the two given proofs, both of the same formula `conclusion` and
from the same assumptions except that the last assumption of the latter is
the negation of that of the former, into a single proof of `conclusion` from
only the common assumptions.

Parameters:
proof_from_affirmation: valid proof of `conclusion` from one or more

assumptions, the last of which is an assumption `assumption`.
proof_from_negation: valid proof of `conclusion` from the same

assumptions and inference rules of `proof_from_affirmation`, but
with the last assumption being '˜`assumption`' instead of
`assumption`.

Returns:
A valid proof of `conclusion` from only the assumptions common to the
given proofs (i.e., without the last assumption of each), via the same
inference rules of the given proofs and in addition `MP`, `I0`, `I1`,
`D`, and `R`.

Examples:
If `proof_from_affirmation` is of ``['p', '˜q', 'r'] ==> '(p&(r|˜r))'``,
then `proof_from_negation` must be of
``['p', '˜q', '˜r'] ==> '(p&(r|˜r))'`` and the returned proof is of
``['p', '˜q'] ==> '(p&(r|˜r))'``.

"""
assert proof_from_affirmation.is_valid()
assert proof_from_negation.is_valid()
assert proof_from_affirmation.statement.conclusion == \

proof_from_negation.statement.conclusion
assert len(proof_from_affirmation.statement.assumptions) > 0
assert len(proof_from_negation.statement.assumptions) > 0
assert proof_from_affirmation.statement.assumptions[:-1] == \

proof_from_negation.statement.assumptions[:-1]
assert Formula('˜', proof_from_affirmation.statement.assumptions[-1]) == \

proof_from_negation.statement.assumptions[-1]
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assert proof_from_affirmation.rules == proof_from_negation.rules
# Task 6.2

Hint: Use the Deduction Theorem (remove_assumption() from Chapter 5) and the ax-
iom R.

Once again, the fact that the axiom R, on which your solution to Task 2 relies, is in our
axiomatic system is of course no coincidence: we have added this axioms to our axiomatic
system precisely because of this. We also note that your solution to Task 2 is the crucial
place where the Deduction Theorem is used on the way to proving the Tautology Theorem,
as well as the Completeness Theorem for Propositional Logic.

Since Task 1 allows us to prove a tautology φ from the set of assumptions that corre-
spond to any model, we can keep combining the “combined proofs” resulting from Task 2,
each time reducing the number of variable names in the assumptions by one, until we
remain with no assumptions. This is precisely how you will now prove the Tautology
Theorem.

Task 3 (Programmatic Proof of the Tautology Theorem).

a. Implement the missing code for the function prove_tautology(tautology, model),
which returns a proof of the given tautology, via our axiomatic system, from the
assumptions that capture the given model, which is a model over a (possibly empty)
prefix of the variable names of the given tautology. In particular, if the given model
is over the empty set of variable names (the default) then the returned proof is of
the given tautology from no assumptions.

propositions/tautology.py

def prove_tautology(tautology: Formula, model: Model = frozendict()) -> Proof:
"""Proves the given tautology from the formulas that capture the given
model.

Parameters:
tautology: tautology that contains no constants or operators beyond '->'

and '˜', to prove.
model: model over a (possibly empty) prefix (with respect to the

alphabetical order) of the variable names of `tautology`, from whose
formulas to prove.

Returns:
A valid proof of the given tautology from the formulas that capture the
given model, in the order returned by `formulas_capturing_model(model)`,
via `AXIOMATIC_SYSTEM`.

Examples:
>>> proof = prove_tautology(Formula.parse('(˜(p->p)->q)'),
... {'p': True, 'q': False})
>>> proof.is_valid()
True
>>> proof.statement.conclusion
(˜(p->p)->q)
>>> proof.statement.assumptions
(p, ˜q)
>>> proof.rules == AXIOMATIC_SYSTEM
True

>>> proof = prove_tautology(Formula.parse('(˜(p->p)->q)'))
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>>> proof.is_valid()
True
>>> proof.statement.conclusion
(˜(p->p)->q)
>>> proof.statement.assumptions
()
>>> proof.rules == AXIOMATIC_SYSTEM
True

"""
assert is_tautology(tautology)
assert tautology.operators().issubset({'->', '˜'})
assert is_model(model)
assert sorted(tautology.variables())[:len(model)] == sorted(model.keys())
# Task 6.3a

Guidelines: If the given model is over all the variable names of the given tautol-
ogy, simply construct the proof using prove_in_model(tautology, model). Oth-
erwise, recursively call prove_tautology() with models that also have assignments
to the next variable name that is unassigned in the given model, and then use the
reduce_assumption() function that you have just implemented.

b. Implement the missing code for the function proof_or_counterexample(formula),
which either returns a proof of the given formula from no assumptions via our ax-
iomatic system (if this formula is a tautology) or returns a model in which the given
formula does not hold (if this formula is not a tautology).

propositions/tautology.py

def proof_or_counterexample(formula: Formula) -> Union[Proof, Model]:
"""Either proves the given formula or finds a model in which it does not
hold.

Parameters:
formula: formula that contains no constants or operators beyond '->' and

'˜', to either prove or find a counterexample for.

Returns:
If the given formula is a tautology, then an assumptionless proof of the
formula via `AXIOMATIC_SYSTEM`, otherwise a model in which the given
formula does not hold.

"""
assert formula.operators().issubset({'->', '˜'})
# Task 6.3b

You have now shown that every tautology is provable via our (sound) axiomatic system,
and since the Soundness Theorem asserts (in particular) that any formula that is provable
via any sound set of inference rules is a tautology, you have essentially proven the following
theorem, giving a remarkable connection between the semantic and syntactic realms, by
stating that any universal truth is provable:

Theorem (The Tautology Theorem). Every tautology is provable from no assumptions via
H. Thus, for any formula φ it is the case that |= φ if and only if `H φ.
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3 The Completeness Theorem for Finite Sets
The Tautology Theorem directly implies also more general variants of basically the same
idea. The first generalization shows that our axiomatic system can be used not only to prove
any tautology—that is, any sound inference rule that has no assumptions—but in fact to
prove any sound inference rule whatsoever. Despite its strength, this is in fact a relatively
easy corollary as we have already seen in Chapter 5 that one may easily “encode” any
inference rule as one without assumptions, such that if the rule is sound then its encoding
is a tautology, and such that it is rather easy to get a proof of the rule from a proof of its
encoding. In the next task, you will prove this generalization.

Task 4 (Programmatic Proof of the “Provability” Version of the Completeness Theorem
for Finite Sets).

a. Start by implementing the missing code for the function encode_as_formula(rule),
which returns a single formula that “encodes” the given inference rule.

propositions/tautology.py

def encode_as_formula(rule):
"""Encodes the given inference rule as a formula consisting of a chain of
implications.

Parameters:
rule: inference rule to encode.

Returns:
The formula encoding the given rule.

Examples:
>>> encode_as_formula(InferenceRule([Formula('p1'), Formula('p2'),
... Formula('p3'), Formula('p4')],
... Formula('q')))
(p1->(p2->(p3->(p4->q))))

>>> encode_as_formula(InferenceRule([], Formula('q')))
q

"""
# Task 6.4a

b. Implement the missing code for the function prove_sound_rule(rule), which takes
a sound inference rule, and returns a proof for it via our axiomatic system.

propositions/tautology.py

def prove_sound_inference(rule: InferenceRule) -> Proof:
"""Proves the given sound inference rule.

Parameters:
rule: sound inference rule whose assumptions and conclusion contain no

constants or operators beyond '->' and '˜', to prove.

Returns:
A valid proof of the given sound inference rule via `AXIOMATIC_SYSTEM`.

"""
assert is_sound_inference(rule)
for formula in {rule.conclusion}.union(rule.assumptions):

assert formula.operators().issubset({'->', '˜'})
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# Task 6.4b

Your solution to Task 4 proves that if a set of assumptions entails a conclusion, then
it is indeed possible to prove this conclusion from these assumptions via our (sound)
axiomatic system. Thus (similarly to the proof of the Tautology Theorem), together with
the Soundness Theorem that gives the converse (for any sound axiomatic system), you have
essentially proven the following theorem, expanding our understanding of the connection
between the semantic and syntactic realms that we unearthed with the Tautology Theorem:

Theorem (The Completeness Theorem for Finite Sets: “Provability” Version). For any
finite set of formulas A and any formula φ, it is the case that A |= φ if and only if A `H φ.

A somewhat more minimalistic and symmetric way to look at the Completeness Theo-
rem is to “move” the conclusion φ into the set of assumptions. More specifically, note that
by definition, A |= φ is equivalent to A ∪ {‘~φ’} not having a model, and by the theorem
on Soundness of Proofs by Way of Contradiction, A ` φ is equivalent to A ∪ {‘~φ’} being
inconsistent. This allows us to rephrase the Completeness Theorem as an equivalence be-
tween the semantic notion of a set of formulas (analogous to A∪{‘~φ’}, but note that ‘~φ’
no longer plays a different role here than any of the formulas in A!) not having a model,
and the syntactic notion of the same set of formulas being inconsistent.

Task 5 (Programmatic Proof of the “Consistency” Version of the Completeness Theorem
for Finite Sets). Implement the missing code for the function model_or_inconsistency(
formulas), which either returns a model of the given formulas (if such a model exists), or
returns a proof of ‘~(p→p)’ via our axiomatic system from the given formulas as assump-
tions (if such a model does not exist).

propositions/tautology.py

def model_or_inconsistency(formulas: Sequence[Formula]) -> Union[Model, Proof]:
"""Either finds a model in which all the given formulas hold, or proves
'˜(p->p)' from these formulas.

Parameters:
formulas: formulas that use only the operators '->' and '˜', to either

find a model of, or prove '˜(p->p)' from.

Returns:
A model in which all of the given formulas hold if such exists,
otherwise a valid proof of '˜(p->p)' from the given formulas via
`AXIOMATIC_SYSTEM`.

"""
for formula in formulas:

assert formula.operators().issubset({'->', '˜'})
# Task 6.5

Hint: If a model of the given formulas does not exist, what can you say about the inference
rule with the given formulas as assumptions, and with conclusion ‘~(p→p)’? Is it sound?
Why? Now how can you use your solution to Task 4 to complete your solution? Make
sure that you completely understand why your solution works, and do not just be content
with it passing our tests.

Your solution for Task 5 indeed proves a version of the Completeness Theorem that is
phrased in a more symmetric manner using the semantic notion of having a model and the
syntactic notion of consistency:
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Theorem (The Completeness Theorem for Finite Sets: “Consistency” Version). A finite
set of formulas has a model if and only if it is consistent with respect to H.

4 The Compactness Theorem and the
Completeness Theorem for Infinite Sets

The theorems we have proven so far in this chapter only proved equivalences between syn-
tactic and semantic notions for finite sets of formulas. For example, our last version of the
Completeness Theorem stated that a finite consistent set of formulas has a model. Does an
infinite consistent set of formulas necessarily also have a model? Before providing an answer
to this question, let us examine the syntactic definitions of proofs and consistency, and the
semantic notions of truth and having a model, for infinite sets of formulas/assumptions.

The definition of a formula φ being provable from a set A of assumptions is that a proof
exists, and by definition a proof has a finite number of lines in it (much like in our discussion
of the length of a formula toward the end of Chapter 1, the number of lines of a proof is
finite yet unbounded).3 If the set A is infinite, then any of its infinitely many formulas
can be used as an assumption in the proof, but since the proof has finite length, only
some finite subset of the assumptions will actually be used in any given proof. Therefore,
since inconsistency is defined as having a proof of both a formula and its negation, we
have that if an infinite set A is inconsistent, then some finite subset of A (the formulas
that appear in the finite proof of the formula and/or in the finite proof of its negation) is
already inconsistent. This shows the following trivial lemma:

Lemma. A set of propositional formulas is consistent if and only if every finite subset of
it is consistent.

Thus there is really “nothing new” when dealing with infinite sets in terms of the
syntactic notions of proofs and consistency—everything can be reduced to finite sets.

Let us now consider the semantic notion of an infinite set A of formulas having a model.
The definition requires that the model satisfy every formula in the infinite set. While every
formula is, by definition, finite, and thus uses only finitely many variable names, since there
are infinitely many formulas in the set, there may be infinitely many variable names that
are used altogether in all formulas in the set, so our model will have to be an infinite object:
an assignment of a truth value to every variable name that appears in any formula in the
set. Determining whether the model satisfies any given formula is still a finite question
since any single formula uses only finitely many of the variable names in the model, but
the whole notion of an infinite model is new. In particular, so far we have not developed
any method of constructing infinite models, so it is not clear how we can construct a model
that satisfies an infinite set of formulas.

Surprisingly, it turns out that the question of whether an infinite set of formulas has a
model can also be reduced to whether all of its finite subsets have models. For reasons that
we will touch on below, this result is called the Compactness Theorem for Propositional
Logic:

Theorem (The Compactness Theorem for Propositional Logic). A set of propositional
formulas has a model if and only if every finite subset of it has a model.

3Indeed, trying to define any alternative notion of “proofs of infinite length” would completely circum-
vent the most fundamental goal of Mathematical Logic: understanding what is possible for humans to
prove.
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The “only if” direction of this theorem is trivial: if the set A has a model, then this
model is a model of every subset of A (finite or otherwise). The “if” direction of this
theorem is actually quite surprising. Let us look at an analogous statement with “formu-
las” over real numbers. Consider the set of inequalities {x ≥ 1, x ≥ 2, x ≥ 3, . . .}. Clearly
every finite subset of these inequalities has a model, i.e., a real number x that satisfies
every inequality in this finite subset (say, take the maximum of all of the numbers that
are “mentioned” in this finite subset). However, no model, i.e., no value of x, satisfies
all of these infinitely many inequalities (the set of natural numbers contains no maximum
element. . . ). In Mathematics, and specifically in the branch of Mathematics called Topol-
ogy, the property that an infinite set of constraints is guaranteed to have a “solution”
(a.k.a. a model, a.k.a. nonempty intersection) if every finite subset of it has one, is called
compactness. Thus, the Compactness Theorem for Propositional Logic is so named since
it asserts that for any family of variable names, the space of models over these variable
names is compact with respect to the constraints of satisfying formulas, and this theorem
is in fact a special case one of the cornerstone theorems of Topology, Tychonoff’s The-
orem, which asserts that all of the spaces in a very large family of spaces (including, for
any family of variable names, the space of all models over these variable names, and also
including many other spaces) have this property.4 We will now give a direct proof of the
Compactness Theorem for Propositional Logic that does not require any background in
Topology:

Proof of the Compactness Theorem for Propositional Logic. We prove the “if” direction,
that is, we assume that every finite subset of a set F of formulas has a model, and we
will construct a model of F . Let us enumerate the variable names used anywhere in the
set of formulas as x1, x2, . . ., and let us enumerate the formulas in the set as φ1, φ2, . . ..
(There are only countably many of each, so we can indeed enumerate them.5) A model is
an assignment of a truth value to each of the (possibly infinitely many) variable names.
We will build the desired model step by step, at each step i deciding which truth value to
assign to xi. Our goal is to pick the truth value to assign to xi at the ith step to maintain
the following property: for every finite subset of the formulas in F , there exists a model

4A remark for readers with a background in Topology: viewing the set of all models as the set of
Boolean assignments to countably many variable names, {True,False}N, it turns out that the set of
models satisfying a given formula is closed with respect to the product topology over {True,False}N,
since belonging to this set depends only on finitely many variable name assignments. So, since Tychonoff’s
Theorem asserts that the product of any collection of compact topological spaces is compact with respect
to the product topology, we have as a special case that {True,False}N is compact with respect to the
product topology, and so its closed sets satisfy the finite intersection property: any collection of closed
sets with an empty intersection has a finite subcollection with an empty intersection, which proves the
Compactness Theorem for Propositional Logic. Unsurprisingly, the direct proof that we will give for the
Compactness Theorem for Propositional Logic is in fact quite similar to a popular proof of the special case
of Tychonoff’s Theorem for countable products of general metric spaces (the latter proof proves that the
product space is sequentially compact, which suffices since the product of countably many metric spaces
is metrizable, and for metrizable spaces sequential compactness is equivalent to compactness).

5As discussed in Chapter 1, according to our definitions the set of variable names is countably infinite
and therefore so is the set of formulas, so we can enumerate each of them. If we allowed using variable
names from a set of greater infinite cardinality (e.g., constant names like cα where α is a real number,
which are impossible to enumerate), then the set of all possible formulas would also no longer be countable,
and therefore we would not be able to enumerate either of these sets. The Compactness Theorem would
still hold, though, and could be proven via analogous core arguments but with some additional supporting
arguments that would require some background in Set Theory. Alternatively, even for variable name sets
of arbitrary cardinality, the Compactness Theorem for Propositional Logic is still a special case of, and
therefore implied by, Tychonoff’s Theorem.
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that satisfies all of them and has the already-fixed truth values for x1, . . . , xi.
Clearly, at the beginning before the first step, the above property holds as we have

not fixed any truth values yet, so the assumption of the theorem is exactly this property
for i = 0. Now let us assume that we already fixed truth values for x1, . . . , xi−1 with
the above property for i−1, and see that we can also fix a truth value for xi in a way
that maintains this property for i. For each j let us examine the finite set of formulas
Fj = {φ1, φ2, . . . , φj}. Given the above property for i−1, for every j there exists a model
of Fj with the already-fixed truth values of x1, . . . , xi−1, so let us consider such a model for
each j. Each of these models (that correspond to different values of j) assigns some truth
value to xi, and since there are only two possible truth values, one (at least) of these two
values is assigned to xi by infinitely many of these models. We will pick such a value as
our fixed value for xi. To see that we have the required property for i, consider any finite
set G ⊆ F . Since G is finite, it is contained in some Fk, and since the value that we fixed
for xi is assigned to it by models corresponding to infinitely many values of j, there exists
some j ≥ k such that the model that satisfies all of Fj assigns this truth value to xi (and
also has the already-fixed truth values for x1, . . . , xi−1 since we only looked at models with
these fixed values). Since G ⊆ Fk ⊆ Fj, this model satisfies G as required and therefore
the above property holds also for i.

We have finished describing the construction of the model—a construction that assigned
a truth value to every variable name xi. To complete the proof, we need to show that this
model indeed satisfies all of F . Take any formula φ ∈ F , and let n be the largest index
of a variable name that appears in it. The truth value of φ depends only on the truth
values of the variable names x1, . . . , xn, and since we picked the n fixed truth values of
these variable names in a way that guarantees that there exists a model with these truth
values that satisfies any finite subset of F , and in particular satisfies the singleton set {φ},
we conclude that all models that have these fixed values for x1, . . . , xn satisfy φ, including
the model that we constructed.

We are now in an enviable state where both the syntactic question of being consistent
and the semantic question of having a model can be reduced to finite sets, for which we have
already proven the equivalence between the two, so we can now get the same equivalence
for infinite sets as well:

Theorem (The Completeness Theorem for Propositional Logic: “Consistency” Version).
A set of formulas has a model if and only if it is consistent with respect to H.

Proof. By the Compactness Theorem, a set of formulas has a model if and only if every
finite subset of it has a model, which by the “consistency” version of the Completeness
Theorem for Finite Sets holds if and only if every finite subset of it is consistent, which by
an immediate lemma we have proven in the beginning of this section holds if and only if
the entire set is consistent. An illustration of this argument is given in Figure 1.

Again, this formalism of the Completeness Theorem is directly equivalent to the
other formalism, completing our understanding of the equivalence within Propositional
Logic of the semantic notion of entailment and the syntactic notion of provability:

Theorem (The Completeness Theorem for Propositional Logic: “Provability” Version).
For any set of formulas A and any formula φ, it is the case that A |= φ if and only if
A `H φ.
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Figure 1: Diagram relating the Completeness and Compactness Theorems. The blue arrows
trace our proof of the “hard direction” of the Completeness Theorem for Propositional
Logic using Finite Completeness and Compactness.

Proof. A |= φ is by definition equivalent to A ∪ {~φ} not having a model, and by the
theorem on Soundness of Proofs by Way Of Contradiction, A ` φ is equivalent to A∪{~φ}
being inconsistent (nothing in the proof of that theorem depended on the finiteness of
A). Therefore, this version of the Completeness Theorem follows immediately from its
“consistency” version.

A Optional Reading: Adding Additional Operators

Throughout this chapter we limited ourselves to formulas that only used negation (‘~’)
and implication (‘→’). As we have seen in Chapter 3 that these two operators form
a complete set of operators, we have not lost any proving power by limiting ourselves
this way. But what if we want to consider general formulas that may also contain the
additional operators ‘&’, ‘|’, ‘T’, and ‘F’? One way to treat this question is to view these
operators as simply shorthand notation for a full expression that is always only written
using negation and implication (along the lines of the substitutions that you implemented
in Chapter 3). Under this point of view, it is clear that everything that we proved in this
chapter continues to hold, since the new operators are only “syntactic sugar” while the
“real” formulas continue to be of the form discussed.

A more direct approach would nonetheless want to actually consider general formulas
that may contain ‘&’, ‘|’, ‘T’, and ‘F’ as primitive operators, as we have done up to this
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chapter.6 It is clear that without further axioms we will not be able to prove anything
about a formula like ‘(p|~p)’. We will thus have to add to our axiomatic systems additional
(sound) axioms that essentially capture the properties of these additional operators:

A: ‘(p→(q→(p&q)))’

NA1: ‘(~q→~(p&q))’

NA2: ‘(~p→~(p&q))’

O1: ‘(q→(p|q))’

O2: ‘(p→(p|q))’

NO: ‘(~p→(~q→~(p|q)))’

T: ‘T’

NF: ‘~F’

propositions/axiomatic_systems.py

# Axiomatic inference rules for conjunction (and implication and negation)

#: Conjunction introduction
A = InferenceRule([], Formula.parse('(p->(q->(p&q)))'))
#: Negative-conjunction introduction (right)
NA1 = InferenceRule([], Formula.parse('(˜q->˜(p&q))'))
#: Negative-conjunction introduction (left)
NA2 = InferenceRule([], Formula.parse('(˜p->˜(p&q))'))

# Axiomatic inference rules for disjunction (and implication and negation)

# Disjunction introduction (right)
O1 = InferenceRule([], Formula.parse('(q->(p|q))'))
# Disjunction introduction (left)
O2 = InferenceRule([], Formula.parse('(p->(p|q))'))
# Negative-disjunction introduction
NO = InferenceRule([], Formula.parse('(˜p->(˜q->˜(p|q)))'))

# Axiomatic inference rules for constants (and implication and negation)

#: Truth introduction
T = InferenceRule([], Formula.parse('T'))
#: Negative-falsity introduction
NF = InferenceRule([], Formula.parse('˜F'))

#: Large axiomatic system for all operators, consisting of the rules in
#: `AXIOMATIC_SYSTEM`, as well as `A`, `NA1`, `NA2`, `O1`, `O2`, `NO`, `T`, and
#: `NF`.
AXIOMATIC_SYSTEM_FULL = \

frozenset(AXIOMATIC_SYSTEM.union({A, NA1, NA2, O1, O2, NO, T, NF}))

6One may similarly want to handle as primitives even more operators as introduced in Chapter 3.
While this can be similarly done, we will stick to these four operators for the purposes of this section.
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So our augmented axiomatic system contains all together seventeen rules: the original
nine rules, as well as these additional eight rules. As in the beginning of this chapter, these
additional axioms were chosen not for frugality in the number of axioms or for aesthetic
reasons, but rather for ease of use. Indeed, once again it turns out (you will optionally
show this in Section B) that a smaller and in a sense also more aesthetic subset Ĥ of only
twelve inference rules suffices for proving all the others in the above augmented axiomatic
system, so once again even though Optional Task 6 below allows using the full augmented
axiomatic system defined above, the Lemma Theorem allows us to state the corresponding
theorem for Ĥ.

Essentially the only place where something has to be augmented in our analysis so
far (and in your already-coded solution to the previous tasks of this chapter) to support
these additional operators is the first lemma on the way to the Tautology Theorem—the
one proving a formula from assumptions that capture a single model (corresponding to
the function prove_in_model() that you have implemented in your solution to Task 1).
That proof proceeded by induction (recursion) on the formula structure and was tailored
closely to the two operators that we allowed to appear there. The same induction/recursion
however can be very similarly extended to also handle the additional operators using the
above new axioms.

Optional Task 6. Implement the missing code7 for the function
prove_in_model_full(formula, model), which has the same functionality as
prove_in_model(formula, model) except that the given formula may contain also
the operators ‘&’, ‘|’, ‘T’, and ‘F’, and the returned proof is via the seventeen inference
rules in AXIOMATIC_SYSTEM_FULL.

propositions/tautology.py

def prove_in_model_full(formula: Formula, model: Model) -> Proof:
"""Either proves the given formula or proves its negation, from the formulas
that capture the given model.

Parameters:
formula: formula that contains no operators beyond '->', '˜', '&', and

'|' (and may contain constants), whose affirmation or negation is to
prove.

model: model from whose formulas to prove.

Returns:
If `formula` evaluates to ``True`` in the given model, then a valid
proof of `formula`; otherwise a valid proof of '˜`formula`'. The
returned proof is from the formulas that capture the given model, in the
order returned by `formulas_capturing_model(model)`, via
`AXIOMATIC_SYSTEM_FULL`.

Examples:
>>> proof = prove_in_model_full(Formula.parse('(p&q7)'),
... {'q7': True, 'p': True})
>>> proof.is_valid()
True
>>> proof.statement.conclusion
(p&q7)
>>> proof.statement.assumptions
(p, q7)

7Start by copying the code of your implementation of prove_in_model(), and then extend it.
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>>> proof.rules == AXIOMATIC_SYSTEM_FULL
True

>>> proof = prove_in_model_full(Formula.parse('(p&q7)'),
... {'q7': False, 'p': True})
>>> proof.is_valid()
True
>>> proof.statement.conclusion
˜(p&q7)
>>> proof.statement.assumptions
(p, ˜q7)
>>> proof.rules == AXIOMATIC_SYSTEM_FULL
True

"""
assert formula.operators().issubset({'T', 'F', '->', '˜', '&', '|'})
assert is_model(model)
# Optional Task 6.6

Your solution to Optional Task 6 gives us a general version of the corresponding lemma,
this time for formulas that may also use the operators and, or, T, and F, in addition to
not and implies:

Lemma. Let φ be a formula (that may use any of the operators ‘~’, ‘→’, ‘|’, ‘&’, ‘T’, and
‘F’). If φ evaluates to True in a given model M , then φ is provable via Ĥ from the set of
formulas that captures M . If φ evaluates to False in M , then ‘~φ’ is provable via Ĥ from
the set of formulas that captures M .

Once you have solved Optional Task 6 and have thus proved the above generalized
lemma, you could now replace every call to prove_in_model() in your code with a call to
prove_in_model_full() (and replace every reference to the earlier version of the lemma
in our analysis with a reference to the generalized version) and all your code should then
run8 (and all proofs should then hold) for general formulas, with our augmented axiomatic
system in lieu of the old one.

B Optional Reading: Other Axiomatic Systems
As noted throughout this chapter, we have chosen the axiomatic systems so far to allow
for our proofs and code to be as simple as possible. In this section, we will explore other
axiomatic systems that still give rise to a complete proof system that are popular due to
their small size or due to other aesthetic reasons. Our first order of business is of course
to show that the axiomatic system H = {MP, I1,D,N} still gives rise to a complete proof
system (if our formulas may contain only implies and not).

propositions/axiomatic_systems.py

#: Hilbert axiomatic system for implication and negation, consisting of `MP`,
#: `I1`, `D`, and `N`.
HILBERT_AXIOMATIC_SYSTEM = frozenset({MP, I1, D, N})

To prove that H gives rise to a complete proof system, by the Lemma Theorem it
suffices to prove via only H all of the other axioms of the axiomatic system that we have
already proven to give rise to a complete proof system, i.e., I0, I2, NI, NN, and R. As

8Some assertions would also have to be changed for this to actually run.
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you have already proven I0 via (a subset of) H in Chapter 4, it in fact suffices to prove
I2, NI, NN, and R, via MP, I0, I1, D, and N. The Deduction Theorem, both directly (by
its explicit use) and indirectly (by using hypothetical syllogisms, via your implementation
of prove_hypothetical_syllogism() from Chapter 5) will be instrumental in proving
these. The functions that you are asked to implement in this section are contained in the
file in the file propositions/some_proofs.py.

Optional Task 7. Prove the rules I2, NI, NN, and R, each via (a subset of your choosing
of) MP, I0, I1, D, and N. The proofs should be respectively returned by the functions
prove_I2(), prove_NI(), prove_NN(), and prove_R(), whose missing code you should
implement.

propositions/some_proofs.py

def prove_I2() -> Proof:
"""Proves `I2` via `MP`, `I0`, `I1`, `D`, `N`.

Returns:
A valid proof of `I2` via the inference rules `MP`, `I0`, `I1`, `D`, and
`N`.

"""
# Optional Task 6.7a

...
def prove_NN() -> Proof:

"""Proves `NN` via `MP`, `I0`, `I1`, `D`, `N`.

Returns:
A valid proof of `NN` via the inference rules `MP`, `I0`, `I1`, `D`, and
`N`.

"""
# Optional Task 6.7c

...
def prove_NI() -> Proof:

"""Proves `NI` via `MP`, `I0`, `I1`, `D`, `N`.

Returns:
A valid proof of `NI` via the inference rules `MP`, `I0`, `I1`, `D`, and
`N`.

"""
# Optional Task 6.7e

...
def prove_R() -> Proof:

"""Proves `R` via `MP`, `I0`, `I1`, `D`, `N`.

Returns:
A valid proof of `R` via the inference rules `MP`, `I0`, `I1`, `D`, and
`N`.

"""
# Optional Task 6.7g

Guidelines: Use the following strategy:

a. Prove I2 (implement the missing code for prove_I2()).
Hint: Use a hypothetical syllogism (see Task 5 in Chapter 5) whose assumptions
are specializations of I1 and N.
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b. Prove that ‘(~~p→p)’ (implement the missing code for the function _prove_NNE()
in the same file).
Hint: Use the Deduction Theorem, i.e., assume ‘~~p’ and deduce ‘p’. To do so,
first prove that ‘(~~p→(~~p→p))’ by “chaining” two hypothetical syllogisms (so the
conclusion of the first hypothetical syllogism serves as the first assumption of the
second hypothetical syllogism). As the first assumption for the first hypothetical
syllogism, use ‘(~~p→(~~~~p→~~p))’ (what is this a specialization of?), and as all
other assumptions use specializations of N.

c. Prove NN (implement the missing code for prove_NN()).
Hint: Apply MP to an appropriate specialization of N.

d. Prove that ‘((p→q)→(~q→~p))’ (implement the missing code for the function
_prove_CP() in the same file).
Hint: First use the Deduction Theorem (twice) to prove ‘((p→q)→(~~p→~~q))’.

e. Prove NI (implement the missing code for prove_NI()).
Hint: Use a specialization of the assumptionless rule that you have proved in the
previous step of this task to prove ‘(~q→~(p→q))’ from ‘p’.

f. Prove the inference rule with assumption ‘(~p→p)’ and conclusion ‘p’ (implement
the missing code for the function _prove_CM() in the same file).
Hint: Start your proof with a single line whose conclusion is the formula
‘((~p→(p→~(~p→p)))→((~p→p)→(~p→~(~p→p))))’.

g. Prove R (implement the missing code for prove_R()).
Hint: Use the Deduction Theorem twice, i.e., prove the inference rule with assump-
tions ‘(q→p)’, ‘(~q→p)’ and conclusion ‘p’. To do so, use a hypothetical syllogism
whose assumptions are ‘(~p→~q)’ and ‘(~q→p)’.

While H is a very popular axiomatic system due to its relative small size, it is by far not
the only axiomatic system of its size that gives rise to a complete proof system. Just to give
one example, another popular choice for such an axiomatic system is H′ = {MP, I1,D,N’},
the variant of H obtained by replacing N with the following (sound) axiom as the axiom
that captures the properties of the operator ‘~’:

N’: ‘((~q→~p)→((~q→p)→q))’.

propositions/axiomatic_systems.py

# Alternative for N

#: Reductio ad absurdum
N_ALTERNATIVE = InferenceRule([], Formula.parse('((˜q->˜p)->((˜q->p)->q))'))

#: Hilbert axiomatic system for implication and negation, with `N` replaced by
#: `N_ALTERNATIVE`.
HILBERT_AXIOMATIC_SYSTEM_ALTERNATIVE = frozenset({MP, I1, D, N_ALTERNATIVE})

Once again, to prove that H′ gives rise to a complete proof system, by the Lemma
Theorem it suffices to prove that N via (only) MP, I0, I1, D, and N’.
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Optional Task 8. Prove the rule N via MP, I0, I1, D, and N’. The proof should be
returned by the function prove_N(), whose missing code you should implement.

propositions/some_proofs.py

def prove_N() -> Proof:
"""Proves `N` via `MP`, `I0`, `I1`, `D`, and `N_ALTERNATIVE`.

Returns:
A valid proof of `N` via the inference rules `MP`, `I0`, `I1`, `D`, and
`N_ALTERNATIVE`.

"""
# Optional Task 6.8

Hint: Use the Deduction Theorem, i.e., assume ‘(~q→~p)’ and prove ‘(p→q)’. To do
so, apply MP to N’ to obtain a formula that will serve as the second assumption of a
hypothetical syllogism whose conclusion is ‘(p→q)’.

Axiomatic systems are sometimes chosen not only due to their size or for practical
reasons, but also due to aesthetic reasons. While we have chosen the axioms A, NA1, and
NA2 to capture the properties of the operator ‘&’, and the axioms O1, O2, and NO to
capture the properties of the operator ‘|’, because these axioms naturally fit into our proof
strategy, a popular choice in Mathematical Logic courses is to replace NA1, NA2, and NO
with the following respective three alternative (sound) axioms, which could be argued to
be a more aesthetic choice as each of these alternative axioms contains only implication,
and not also negation, in addition to the relevant operator (‘&’ or ‘|’) whose properties are
captured:

AE1: ‘((p&q)→q)’

AE2: ‘((p&q)→p)’

OE: ‘((p→r)→((q→r)→((p|q)→r)))’

propositions/axiomatic_systems.py

# Alternatives for NA1, NA2, NO without negation

#: Conjunction elimination (right)
AE1 = InferenceRule([], Formula.parse('((p&q)->q)'))
#: Conjunction elimination (left)
AE2 = InferenceRule([], Formula.parse('((p&q)->p)'))
#: Disjunction elimination
OE = InferenceRule([], Formula.parse('((p->r)->((q->r)->((p|q)->r)))'))

#: Hilbert axiomatic system for all operators, consisting of the rules in
#: `HILBERT_AXIOMATIC_SYSTEM`, as well as `A`, `AE1`, `AE2`, `O1`, `O2`, `OE`,
#: `T`, and `NF`.
HILBERT_AXIOMATIC_SYSTEM_FULL = \

frozenset(HILBERT_AXIOMATIC_SYSTEM.union({A, AE1, AE2, O1, O2, OE, T, NF}))

Your final optional task in this chapter is to show that the axiomatic system resulting
from this replacement, Ĥ = {MP, I1,D,N,A,AE1,AE2,O1,O2,OE,T,NF}, indeed still
gives rise to a complete proof system (even if our formulas may contain also ‘&’, ‘|’, ‘T’,
and ‘F’). You will once again rely on the power of the Lemma Theorem, by which it suffices
to only show that NA1, NA2, and NO are provable via Ĥ.
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Optional Task 9. Prove each of the following inference rules via the respective axioms
specified below. Each of these proofs should be returned by the respective function specified
below, whose missing code you should implement.

a. Prove NA1 via MP, I0, I1, D, N, and AE1. The proof should be returned by
prove_NA1().
Hint: Use AE1.

b. Prove NA2 via MP, I0, I1, D, N, and AE2. The proof should be returned by
prove_NA2().
Hint: Use AE2.

c. Prove NO via MP, I0, I1, D, N, and OE. The proof should be returned by prove_NO().
Hint: Use OE; make use of I2 (more than once) and of the inference rule that you
have proved in Part f of Optional Task 7.

propositions/some_proofs.py

def prove_NA1() -> Proof:
"""Proves `NA1` via `MP`, `I0`, `I1`, `D`, `N`, and `AE1`.

Returns:
A valid proof of `NA1` via the inference rules `MP`, `I0`, `I1`, `D`,
and `AE1`.

"""
# Optional Task 6.9a

def prove_NA2() -> Proof:
"""Proves `NA2` via `MP`, `I0`, `I1`, `D`, `N`, and `AE2`.

Returns:
A valid proof of `NA2` via the inference rules `MP`, `I0`, `I1`, `D`,
and `AE2`.

"""
# Optional Task 6.9b

def prove_NO() -> Proof:
"""Proves `NO` via `MP`, `I0`, `I1`, `D`, `N`, and `OE`.

Returns:
A valid proof of `NO` via the inference rules `MP`, `I0`, `I1`, `D`, and
`OE`.

"""
# Optional Task 6.9c

Chapter 6 101 Draft; comments welcome
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