
DRAFT

This material will be published by Cambridge University Press as:
Mathematical Logic through Python by Yannai A. Gonczarowski and Noam Nisan

This pre-publication version is free to view and download for personal use only. Not for re-distribution,
re-sale or use in derivative works. Please link to: www.LogicThruPython.org

© Yannai A. Gonczarowski and Noam Nisan 2017–2021.

Chapter 7:

Predicate Logic Syntax and Semantics

Propositional Logic, which we studied in the first part of this book up to this point,
is not rich enough by itself to represent many common logical statements. Consider for
example the simple syllogism: All men are mortal, some men exist; thus, some mortals
exist. Propositional Logic cannot even express the notions of “all” or “exists,” let alone
this type of logical deduction. We will therefore now switch to a different, richer logic,
called First-Order Predicate Logic, or for short, Predicate Logic (or First-Order
Logic). This logic, which will be our language for the second part of this book, will be
strong enough to express and formalize such notions.

For example the above statement can be written in Predicate Logic as:1

Assumptions: ‘∀x[(Man(x)→Mortal(x))]’, ‘∃x[Man(x)]’
Conclusion: ‘∃x[Mortal(x)]’

In fact, this logic is strong enough to represent every statement (and proof) that you
have ever seen in Mathematics! For example, the commutative law of addition can be
represented as ‘∀x[∀y[x+y=y+x]]’, which we will actually write in the slightly more cum-
bersome notation ‘∀x[∀y[plus(x,y)=plus(y,x)]]’. An integral part of allowing quantifications
(“for all” / “exists”) is that the reasoning is about variables that are no longer only place-
holders for Boolean values, but rather placeholders for much richer “values.” For example,
wherever it appears in the syllogism example above, the variable ‘x’ can be defined as a
placeholder for any living thing, while in the commutative law above, the variables ‘x’
and ‘y’ can be placeholders for any number, or more generally for any group element or
field element.

This new logic will enable a transformation in our thinking: until this point the for-
mal logic that we were analyzing, Propositional Logic, was different—weaker—than the
mathematical language (or programming) with which we were analyzing it. Now, since
Predicate Logic is in fact a proper formalization of all of Mathematics, the mathematical
language that we will use to talk about logic can in fact itself be formalized as Predicate
Logic. We will nonetheless keep allowing ourselves to talk “like in normal Math courses”
(as you have done since the beginning of your studies) rather than being 100% formal, but
it is important to keep in mind that in principle we could convert all of the definitions and
proofs in this whole book—or in any other Mathematics book—to a completely formal
form written entirely in Predicate Logic. This chapter, which parallels Chapters 1 and 2
only for Predicate Logic, defines the syntax and semantics of Predicate Logic.

1Notice that it takes some ingenuity to formalize ”All men are mortal” as ‘∀x[(Man(x)→Mortal(x))]’.
Indeed, formalizing human-language sentences as formulas may at times be far from a trivial task, but
that is not the focus of this book.

103 Draft; comments welcome

www.LogicThruPython.org

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

1 Syntax
Propositional Logic was created to reason about Boolean objects; therefore, every formula
represents (that is, when we endow it with semantics) a Boolean statement. As we have
noted above, in Predicate Logic we will have formulas that represent a Boolean state-
ment, such as ‘plus(x,y)=z’, but we will also have more basic “formula-like” expressions
called terms, such as ‘plus(x,y)’, which evaluate to not-necessarily-Boolean values such
as numbers, other mathematical objects, or even people or more general living beings as
in the case of the term ‘x’ in the example at the top of this chapter. As with Proposi-
tional Logic, we start by syntactically defining terms and formulas in Predicate Logic, and
will only later give them semantic meaning. Nonetheless, remembering that formulas will
eventually represent Boolean statements, while terms will eventually evaluate to arbitrary
not-necessarily-Boolean values, will add an intuitive layer of understanding to our syntactic
definitions and will help us understand where we are headed. We start by defining terms
in Predicate Logic:

Definition (Term). The following strings are (valid2) terms in Predicate Logic:

• A variable name: a sequence of alphanumeric characters that begins with a letter
in ‘u’. . . ‘z’. For example, ‘x’, ‘y12’, or ‘zLast’.

• A constant name: a sequence of alphanumeric characters that begins with a digit
or with a letter in ‘a’. . . ‘e’; or an underscore (with nothing before or after it). For
example, ‘0’, ‘c1’, ‘7x’, or ‘ ’.

• An n-ary function invocation of the form ‘f(t1,. . . ,tn)’, where f is a function
name denoted by a sequence of alphanumeric characters that begins with a letter
in ‘f’. . . ‘t’, where3 n ≥ 1, and where each ti is itself a (valid) term. For example,
‘plus(x,y)’, ‘s(s(0))’, or ‘f(g(x),h(7,y),c)’.

These are the only (valid) terms in Predicate Logic.

The file predicates/syntax.py defines (among other classes) the Python class Term
for holding a term as a data structure.

predicates/syntax.py

def is_constant(string: str) -> bool:
"""Checks if the given string is a constant name.

Parameters:
string: string to check.

Returns:
``True`` if the given string is a constant name, ``False`` otherwise.

"""
return (((string[0] >= '0' and string[0] <= '9') or \

(string[0] >= 'a' and string[0] <= 'e')) and \
string.isalnum()) or string == '_'

2Similarly to the case of propositional formulas, what we call valid terms are often called well-formed
terms in other textbooks.

3Another choice that we could have made would have been to not allow any constants, but to instead
allow nullary functions, which would have “acted as” constants. The reason that we specifically allow
constants (and therefore disallow nullary functions as they are not needed when constants are allowed),
beyond avoiding the clutter of many empty pairs of brackets, will become clear in Chapter 12.

Chapter 7 104 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

def is_variable(string: str) -> bool:
"""Checks if the given string is a variable name.

Parameters:
string: string to check.

Returns:
``True`` if the given string is a variable name, ``False`` otherwise.

"""
return string[0] >= 'u' and string[0] <= 'z' and string.isalnum()

def is_function(string: str) -> bool:
"""Checks if the given string is a function name.

Parameters:
string: string to check.

Returns:
``True`` if the given string is a function name, ``False`` otherwise.

"""
return string[0] >= 'f' and string[0] <= 't' and string.isalnum()

@frozen
class Term:

"""An immutable predicate-logic term in tree representation, composed from
variable names and constant names, and function names applied to them.

Attributes:
root: the constant name, variable name, or function name at the root of

the term tree.
arguments: the arguments of the root, if the root is a function name.

"""
root: str
arguments: Optional[Tuple[Term, ...]]

def __init__(self, root: str, arguments: Optional[Sequence[Term]] = None):
"""Initializes a `Term` from its root and root arguments.

Parameters:
root: the root for the formula tree.
arguments: the arguments for the root, if the root is a function

name.
"""
if is_constant(root) or is_variable(root):

assert arguments is None
self.root = root

else:
assert is_function(root)
assert arguments is not None and len(arguments) > 0
self.root = root
self.arguments = tuple(arguments)

The constructor of this class creates an expression-tree representations for a term. For
example, the data structure for representing the term ‘plus(s(x),3))’ is constructed using
the following code:

my_term = Term('plus', [Term('s', [Term('x')]), Term('3')])

Note that the terms that serve as arguments of function invocations are passed to the

Chapter 7 105 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

constructor together as a Python list rather than each argument separately (as was the
case for, e.g., passing operands to operators in our code for Propositional Logic). We now
move on to use terms to define formulas in Predicate Logic:

Definition (Formula). The following strings are (valid4) formulas in Predicate Logic:

• An equality of the form ‘t1=t2’, where each of t1 and t2 is a (valid) term. For
example, ‘0=0’, ‘s(0)=1’, or ‘plus(x,y)=plus(y,x)’.

• An n-ary relation invocation5 of the form ‘R(t1,. . . ,tn)’, where R is a relation
name denoted by a string of alphanumeric characters that begins with a letter in
‘F’. . . ‘T’, where n ≥ 0 (note that we specifically allow nullary relations), and where
each ti is a term. For example, ‘R(x,y)’, ‘Plus(s(0),x,s(x))’, or ‘Q()’.

• A (unary) negation of the form ‘~φ’, where φ is a (valid) formula.

• A binary operation of the form ‘(φ*ψ)’, where * is one of the binary operators ‘|’,
‘&’, or ‘→’,6 and each of φ and ψ is a formula.

• A quantification of the form ‘Qx[φ]’, where Q is either the universal quanti-
fier ‘∀’ which we represent in Python as 'A' or the existential quantifier ‘∃’
which we represent in Python as 'E', where x is a variable name (denoted by a se-
quence of alphanumeric characters that begins a letter in ‘u’. . . ‘z’, as defined above),
and where φ is a formula. The subformula φ that is within the square brackets in
the quantification ‘Qx[φ]’ is called the scope of the quantification. For example,
‘∀x[x=x]’, ‘∃x[R(7,y)]’, ‘∀x[∃y[R(x,y)]]’, or ‘∀x[(R(x)|∃x[Q(x)])]’.

These are the only (valid) formulas in Predicate Logic.

The file predicates/syntax.py also defines the Python class Formula for holding a
predicate-logic formula as a data structure.

predicates/syntax.py

def is_equality(string: str) -> bool:
"""Checks if the given string is the equality relation.

Parameters:
string: string to check.

Returns:
``True`` if the given string is the equality relation, ``False``
otherwise.

4As in propositional logic, what we call valid formulas are often called well-formed formulas in other
textbooks.

5A relation invocation is sometimes called a predication in other textbooks. We use the term relation
invocation to stress its technical similarity to a function invocation: both function names and relation
names can be invoked on an n-tuple of terms, with the difference being that a function invocation is a
term while a relation invocation is a formula. (When we endow them with semantics later, a relation will
correspond to a mapping that returns a Boolean value—a truth value—while a function will correspond
to a mapping that returns a not-necessarily-Boolean object of the same type, in some sense, as its inputs.)

6We could have again used any other (larger or smaller) set of complete Boolean operators, including
operators of various arities, as discussed in Chapter 3 for Propositional Logic. As the discussion for
Predicate Logic would have been completely equivalent, we omit it here and stick with the unary negation
operator and with these three binary operators for convenience as we did in the first part of this book.
(We allow ourselves not to bother with nullary operators, though, to avoid terminologically confusing them
with the similarly named predicate-logic constants.)

Chapter 7 106 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

"""
return string == '='

def is_relation(string: str) -> bool:
"""Checks if the given string is a relation name.

Parameters:
string: string to check.

Returns:
``True`` if the given string is a relation name, ``False`` otherwise.

"""
return string[0] >= 'F' and string[0] <= 'T' and string.isalnum()

def is_unary(string: str) -> bool:
"""Checks if the given string is a unary operator.

Parameters:
string: string to check.

Returns:
``True`` if the given string is a unary operator, ``False`` otherwise.

"""
return string == '˜'

def is_binary(string: str) -> bool:
"""Checks if the given string is a binary operator.

Parameters:
string: string to check.

Returns:
``True`` if the given string is a binary operator, ``False`` otherwise.

"""
return string == '&' or string == '|' or string == '->'

def is_quantifier(string: str) -> bool:
"""Checks if the given string is a quantifier.

Parameters:
string: string to check.

Returns:
``True`` if the given string is a quantifier, ``False`` otherwise.

"""
return string == 'A' or string == 'E'

@frozen
class Formula:

"""An immutable predicate-logic formula in tree representation, composed
from relation names applied to predicate-logic terms, and operators and
quantifications applied to them.

Attributes:
root: the relation name, equality relation, operator, or quantifier at

the root of the formula tree.
arguments: the arguments of the root, if the root is a relation name or

the equality relation.

Chapter 7 107 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

first: the first operand of the root, if the root is a unary or binary
operator.

second: the second operand of the root, if the root is a binary
operator.

variable: the variable name quantified by the root, if the root is a
quantification.

statement: the statement quantified by the root, if the root is a
quantification.

"""
root: str
arguments: Optional[Tuple[Term, ...]]
first: Optional[Formula]
second: Optional[Formula]
variable: Optional[str]
statement: Optional[Formula]

def __init__(self, root: str,
arguments_or_first_or_variable: Union[Sequence[Term],

Formula, str],
second_or_statement: Optional[Formula] = None):

"""Initializes a `Formula` from its root and root arguments, root
operands, or root quantified variable name and statement.

Parameters:
root: the root for the formula tree.
arguments_or_first_or_variable: the arguments for the root, if the

root is a relation name or the equality relation; the first
operand for the root, if the root is a unary or binary operator;
the variable name to be quantified by the root, if the root is a
quantification.

second_or_statement: the second operand for the root, if the root is
a binary operator; the statement to be quantified by the root,
if the root is a quantification.

"""
if is_equality(root) or is_relation(root):

Populate self.root and self.arguments
assert isinstance(arguments_or_first_or_variable, Sequence) and \

not isinstance(arguments_or_first_or_variable, str)
if is_equality(root):

assert len(arguments_or_first_or_variable) == 2
assert second_or_statement is None
self.root, self.arguments = \

root, tuple(arguments_or_first_or_variable)
elif is_unary(root):

Populate self.first
assert isinstance(arguments_or_first_or_variable, Formula)
assert second_or_statement is None
self.root, self.first = root, arguments_or_first_or_variable

elif is_binary(root):
Populate self.first and self.second
assert isinstance(arguments_or_first_or_variable, Formula)
assert second_or_statement is not None
self.root, self.first, self.second = \

root, arguments_or_first_or_variable, second_or_statement
else:

assert is_quantifier(root)
Populate self.variable and self.statement
assert isinstance(arguments_or_first_or_variable, str) and \

Chapter 7 108 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

is_variable(arguments_or_first_or_variable)
assert second_or_statement is not None
self.root, self.variable, self.statement = \

root, arguments_or_first_or_variable, second_or_statement

The constructor of this class similarly creates an expression-tree representation for a
(predicate-logic) formula. For example, given the term my_term defined in the example
above, the data structure for representing the formula ‘(∃x[plus(s(x),3)=y]→GT(y,4))’ is
constructed using the following code:

my_formula = Formula('−>',
Formula('E', 'x',

Formula('=', [my_term, Term('y')])),
Formula('GT', [Term('y'), Term('4')]))

Once again, note that the terms that serve as arguments of relation invocations (including
arguments of the equality relation) are passed to the constructor together as a Python
list rather than each argument separately (as is the case for, e.g., the operands of Boolean
operators). Also note that for nullary relation invocations, this list will be of length zero.
As with propositional formulas, to enable the safe reuse of existing formula and term
objects as building blocks for (possibly even multiple) other formula and term objects, we
have defined both of these classes to be immutable using the @frozen decorator.

As with propositional formulas, it is possible to represent predicate-logic terms and
formulas as strings in a variety of notations, including infix, polish and reverse polish
notations. We will use the representation defined above, which for terms is a functional
notation that is similar to polish notation (only with added parentheses and commas since
we have not defined the arity of each function name in advance), and for formulas is infix
notation for Boolean operations and for equality, once again is a functional notation that is
similar to polish notation (in the same sense, for the same reasons) for relation invocations,
and is also similar to polish notation (with the addition of square brackets for readability)
for quantifications.

Task 1. Implement the missing code for the method __repr__() of class Term, which
returns a string that represents the term (in the usual functional notation defined above).

predicates/syntax.py

class Term:
...

def __repr__(self) -> str:
"""Computes the string representation of the current term.

Returns:
The standard string representation of the current term.

"""
Task 7.1

Example: For the term my_term defined in the example above, my_term.__repr__()
(and hence also str(my_term)) should return the string 'plus(s(x),3)'.

Task 2. Implement the missing code for the method __repr__() of class Formula, which
returns a string that represents the term (in the usual notation defined above—infix for
Boolean operations and equality, functional for relation invocations, similar to polish for
quantifications).

Chapter 7 109 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

predicates/syntax.py

class Formula:
...

def __repr__(self) -> str:
"""Computes the string representation of the current formula.

Returns:
The standard string representation of the current formula.

"""
Task 7.2

Example: For the formula my_formula defined in the example above,
my_formula.__repr__() (and hence also str(my_formula)) should return the string
'(Ex[plus(s(x),3)=y]−>GT(y,4))'.

We observe that similarly to the string representations (both infix and prefix) of propo-
sitional formulas, the string representations of predicate-logic terms and formulas are also
prefix-free, meaning that there are no two valid distinct predicate-logic terms such that
the string representation of one is a prefix of the string representation of the other (with
a small caveat, analogous to that of propositional formulas, that a variable name or con-
stant name cannot be broken down so that only its prefix is taken), and similarly for
predicate-logic formulas:

Lemma (Prefix-Free Property of Terms). No term is a prefix of another term, except for
the case of a variable name as a prefix of another variable name, or a constant name as a
prefix of another constant name.

Lemma (Prefix-Free Property of Formulas). No formula is a prefix of another formula,
except for the case of an equality with a variable name or constant name on the right-
hand side, as a prefix of another equality with the same left-hand-side term as the former
equality, but with another variable name or constant name (respectively) on the right-hand
side (e.g., ‘f(x)=a1’ as a prefix of ‘f(x)=a123’).

The proofs of the above lemmas are completely analogous to the proof of the lemma on
the prefix-free property of propositional formulas from Chapter 1, since despite the richness
of the language of Predicate Logic, we have taken care to define the various tokens in it—
constant names, function names, variable names, relation names, quantifiers, etc.—so that
they can be differentiated from one another based on their first character without the
need to look beyond it (just like in Propositional Logic). Therefore, we omit these proofs
(make sure that you can reconstruct their reasoning, though!). The prefix-free property
allows for convenient parsing of predicate-logic expressions, using the same strategy that
you followed for parsing propositional formulas in Chapter 1.

Task 3.

a. Implement the missing code for the static method _parse_prefix(string) of class
Term, which takes a string that has a prefix that represents a term, and returns a
term tree created from that prefix, and a string containing the unparsed remainder
of the string (which may be empty, if the parsed prefix is in fact the entire string).

Chapter 7 110 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

predicates/syntax.py

class Term:
...

@staticmethod
def _parse_prefix(string: str) -> Tuple[Term, str]:

"""Parses a prefix of the given string into a term.

Parameters:
string: string to parse, which has a prefix that is a valid

representation of a term.

Returns:
A pair of the parsed term and the unparsed suffix of the string. If
the given string has as a prefix a constant name (e.g., 'c12') or a
variable name (e.g., 'x12'), then the parsed prefix will be that
entire name (and not just a part of it, such as 'x1').

"""
Task 7.3a

Example: Term._parse_prefix('s(x),3))') should return a pair whose first el-
ement is a Term object equivalent to Term('s', [Term('x')]), and whose second
element is the string ',3))'.
Hint: Use recursion.

b. Implement the missing code for the static method parse(string) of class Term,
which parses a given string representation of a term. You may assume that the input
string represents a valid term.

predicates/syntax.py

class Term:
...

@staticmethod
def parse(string: str) -> Term:

"""Parses the given valid string representation into a term.

Parameters:
string: string to parse.

Returns:
A term whose standard string representation is the given string.

"""
Task 7.3b

Example: Term.parse('plus(s(x),3))') should return a Term object equivalent
to my_term from the example above.
Hint: Use the _parse_prefix() method.

Similarly to the case of propositional formulas in Chapter 1, the reasoning and code that
allowed you to implement the second (and the first) part of Task 3 without any ambiguity
essentially prove the following theorem:

Theorem (Unique Readability of Terms). There is a unique derivation tree for every valid
term in Predicate Logic.

Chapter 7 111 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Task 4.

a. Implement the missing code for the static method _parse_prefix(string) of class
Formula, which takes a string that has a prefix that represents a formula, and re-
turns a formula tree created from that prefix, and a string containing the unparsed
remainder of the string (which may be empty, if the parsed prefix is in fact the entire
string).

predicates/syntax.py

class Formula:
...

@staticmethod
def _parse_prefix(string: str) -> Tuple[Formula, str]:

"""Parses a prefix of the given string into a formula.

Parameters:
string: string to parse, which has a prefix that is a valid

representation of a formula.

Returns:
A pair of the parsed formula and the unparsed suffix of the string.
If the given string has as a prefix a term followed by an equality
followed by a constant name (e.g., 'f(y)=c12') or by a variable name
(e.g., 'f(y)=x12'), then the parsed prefix will include that entire
name (and not just a part of it, such as 'f(y)=x1').

"""
Task 7.4a

Example: Formula._parse_prefix('Ex[plus(s(x),3)=y]−>GT(y,4))') should
return a pair whose first element is a Formula equivalent to Formula('E', 'x',
Formula('=', [my_term, Term('y')])) (for my_term from the example above),
and whose second element is the string '−>GT(y,4))'.

Hint: Use recursion, and use the _parse_prefix() method of class Term when
needed.

b. Implement the missing code for the static method parse(string) of class Formula,
which parses a given string representation of a formula. You may assume that the
input string represents a valid formula.

predicates/syntax.py

class Formula:
...

@staticmethod
def parse(string: str) -> Formula:

"""Parses the given valid string representation into a formula.

Parameters:
string: string to parse.

Returns:
A formula whose standard string representation is the given string.

"""
Task 7.4b

Chapter 7 112 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Example: Formula.parse('(Ex[plus(s(x),3)=y]−>GT(y,4))') should return a
Formula object equivalent to my_formula from the example above.
Hint: Use the _parse_prefix() method.

Similarly to the case of terms, the reasoning and code that allowed you to implement
the second (and the first) part of Task 4 without any ambiguity essentially prove the
following theorem:

Theorem (Unique Readability of Formulas). There is a unique derivation tree for every
valid formula in Predicate Logic.

Completing the syntactic section of this chapter, you are now asked to implement a few
methods that will turn out to be useful later on—methods that return all the constructs of
a specific type (constant names, variable names, function names, or relation names) that
are used in a term or a formula.

Task 5. Implement the missing code for the methods constants(), variables(), and
functions() of class Term, which respectively return all of the constant names that appear
in the term, all of the variable names that appear in the term, and all of the function names
that appear in the term—each function name in a pair with the arity of its invocations.
For the latter, you may assume that any function name that appears multiple times in the
term is always invoked with the same arity.

predicates/syntax.py

class Term:
...

def constants(self) -> Set[str]:
"""Finds all constant names in the current term.

Returns:
A set of all constant names used in the current term.

"""
Task 7.5a

def variables(self) -> Set[str]:
"""Finds all variable names in the current term.

Returns:
A set of all variable names used in the current term.

"""
Task 7.5b

def functions(self) -> Set[Tuple[str, int]]:
"""Finds all function names in the current term, along with their
arities.

Returns:
A set of pairs of function name and arity (number of arguments) for
all function names used in the current term.

"""
Task 7.5c

For formulas, it turns out that we will sometimes be interested in the set of free
variable names in a formula rather than all variable names in it. A free occurrence of a

Chapter 7 113 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

variable name in a formula is one that is not immediately next to a quantifier, nor bound
by—that is, within the scope of—a quantification over this variable name. For example, in
the formula ‘∀x[R(x,y)]’, the occurrence of the variable name ‘y’ is free, but the occurrence
of the variable name ‘x’ within ‘R(x,y)’ is not free since it is bound by the universal
quantification ‘∀x’. To take a more delicate example, in the formula ‘(∃x[Q(x,y)]&x=0)’,
while the first occurrence of ‘x’ (not counting the one immediately next to the quantifier
in ‘∃x’) is bound (and therefore not free), the second one is free, and so the free variable
names—the variable names that have free occurrences—in this formula are nonetheless
‘x’ and ‘y’.

Task 6. Implement the missing code for the methods constants(), variables(),
free_variables(), functions(), and relations() of class Formula, which respectively
return all of the constants names that appear in the formula, all of the variable names
that appear in the formula, all of the variable names that have free occurrences in the
formula, all of the function names that appear in the formula (each function name in a
pair with the arity of its invocations), and all of the relation names that appear in the
formula—each relation name in a pair with the arity of its invocations. For the latter two,
you may assume that any function name or relation name that appears multiple times in
the formula is always invoked with the same arity.

predicates/syntax.py

class Formula:
...

def constants(self) -> Set[str]:
"""Finds all constant names in the current formula.

Returns:
A set of all constant names used in the current formula.

"""
Task 7.6a

def variables(self) -> Set[str]:
"""Finds all variable names in the current formula.

Returns:
A set of all variable names used in the current formula.

"""
Task 7.6b

def free_variables(self) -> Set[str]:
"""Finds all variable names that are free in the current formula.

Returns:
A set of every variable name that is used in the current formula not
only within a scope of a quantification on that variable name.

"""
Task 7.6c

def functions(self) -> Set[Tuple[str, int]]:
"""Finds all function names in the current formula, along with their
arities.

Returns:
A set of pairs of function name and arity (number of arguments) for
all function names used in the current formula.

Chapter 7 114 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

"""
Task 7.6d

def relations(self) -> Set[Tuple[str, int]]:
"""Finds all relation names in the current formula, along with their
arities.

Returns:
A set of pairs of relation name and arity (number of arguments) for
all relation names used in the current formula.

"""
Task 7.6e

Finally, before moving on to the semantics of Predicate Logic, we note as we did for
Propositional Logic that each expression (term or formula) is a finite-length string whose
letters come from a finite number of characters, and thus there is a finite number of
expressions of any given fixed length. We thus once again get the following simple fact:7

Theorem. The set of terms and the set of formulas in Predicate Logic are both countably
infinite.

2 Semantics
We now move to the semantics of predicate-logic expressions (terms and formulas). Recall
that in Propositional Logic both variables and formulas represent Boolean values, and a
model directly specifies an interpretation, which is a Boolean value (a truth value), to
each of the variable names, and the value of a formula is computed from the interpretations
of its variable names according to the truth tables of the operators in the formula. As
discussed above, in Predicate Logic our variables do not represent Boolean values, but
rather values from some universe of elements—this is the grand set of values over which the
quantifiers ‘∀’ and ‘∃’ quantify. In this logic, not only is the mapping from variable/constant
names to values (from the universe) defined by the model, but in fact the universe that
these values belong to is itself also defined by the model and can differ between models.
Accordingly, the interpretations of all predicate-logic expression constructs that can be
applied to terms—i.e., the mappings by which relation names and function names are
interpreted—are also defined by the model.

The universe of a model could be any set (though we will restrict ourselves to finite
sets in our code), for example the set of all elements of some field. Models in Predicate
Logic define this universe and additionally provide interpretations of the constant names (as
elements of the universe8), function names (as maps from tuples of elements of the universe
to an element of the universe), and relation names (as maps from tuples of elements of
the universe to Boolean values) used in the formulas. Thus, as already hinted to in the
beginning of this chapter, the semantic interpretation (value) that a model induces on a
term will be an element from the universe, while the value induced by a model on a formula

7As in Propositional Logic, all of our results will extend naturally via analogous proofs to allow for sets
of constant/variable/function/relation names of arbitrary cardinality, which would imply also terms and
formulas sets of arbitrary cardinality. As before, in the few places where the generalization will not be
straightforward, we will explicitly discuss this.

8In this sense, somewhat confusingly, constants in Predicate Logic are analogous to variables in Propo-
sitional Logic, while as we will see below variables in Predicate Logic play a different role that has to do
with quantifications and has no analogue in Propositional Logic.

Chapter 7 115 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

will be Boolean (a truth value). Variables are not assigned a specific interpretation by a
model, and as we will see below, will only get a value once it is assigned to them by an
additional assignment—corresponding to a quantification—that complements the model
(as a variable name is syntactically a term, the value assigned to a variable name will also
be an element of the universe of the model).

Definition (Model). A model in predicate logic consists of a set of elements Ω called the
universe of the model, as well as an interpretation for a set of constant names, function
names, and relation names. An interpretation of a constant name is an element in the
universe Ω, an interpretation of an n-ary function name is a function f : Ωn → Ω, and
an interpretation of an n-ary relation name is a subset of Ωn (for which the relation
holds9).

For example, the following describes the five-element field F5 (sometimes also denoted
as Z5 or GF(5)) as a model for a field:

• Universe Ω = {0, 1, 2, 3, 4}.

• The interpretation of the constant name ‘0’ is 0 ∈ Ω. The interpretation of the
constant name ‘1’ is 1 ∈ Ω.

• The interpretation of the binary function name ‘plus’ is addition modulo 5:
plus(0, 0) = 0, plus(0, 1) = 1, . . . , plus(0, 4) = 4, plus(1, 0) = 1, . . . , plus(1, 3) = 4,
plus(1, 4) = 0, . . . , plus(4, 4) = 3. The interpretation of the binary function name
‘times’ is multiplication modulo 5, for example, times(3, 3) = 4.

• The interpretation of the unary relation name10 ‘IsPrimitive’ is {(2), (3)}.

• Depending on the expressions that we wish to evaluate, we could also add corre-
sponding interpretations for additional function names and relation names, such as
the unary function names ‘inverse’ and ‘multiplicativeInverse’.

The file predicates/semantics.py defines a class Model that holds a semantic model
for predicate-logic expressions.

predicates/semantics.py

#: A generic type for a universe element in a model.
T = TypeVar('T')

@frozen
class Model(Generic[T]):

"""An immutable model for predicate-logic constructs.

Attributes:
universe: the set of elements to which terms can be evaluated and over

which quantifications are defined.
constant_interpretations: mapping from each constant name to the

universe element to which it evaluates.

9While this standard representation of a relation as the set of all n-tuples of universe elements for
which the relation holds (i.e., is true) will be slightly more convenient for us in our code, and is also
more aesthetic, we will at times continue to think of relations also as functions from n-tuples of universe
elements to Boolean values when the analogy to functions (from n-tuples of universe elements to universe
elements) is intuitively useful.

10A field element is called primitive if it generates the multiplicative group of the field, that is, if every
nonzero element of the field can be written as an integer power of that element.

Chapter 7 116 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

relation_arities: mapping from each relation name to its arity, or to
``-1`` if the relation is the empty relation.

relation_interpretations: mapping from each n-ary relation name to
argument n-tuples (of universe elements) for which the relation is
true.

function_arities: mapping from each function name to its arity.
function_interpretations: mapping from each n-ary function name to the

mapping from each argument n-tuple (of universe elements) to the
universe element that the function outputs given these arguments.

"""
universe: FrozenSet[T]
constant_interpretations: Mapping[str, T]
relation_arities: Mapping[str, int]
relation_interpretations: Mapping[str, AbstractSet[Tuple[T, ...]]]
function_arities: Mapping[str, int]
function_interpretations: Mapping[str, Mapping[Tuple[T, ...], T]]

def __init__(self, universe: AbstractSet[T],
constant_interpretations: Mapping[str, T],
relation_interpretations:
Mapping[str, AbstractSet[Tuple[T, ...]]],
function_interpretations:
Mapping[str, Mapping[Tuple[T, ...], T]] = frozendict()):

"""Initializes a `Model` from its universe and constant, relation, and
function name interpretations.

Parameters:
universe: the set of elements to which terms are to be evaluated

and over which quantifications are to be defined.
constant_interpretations: mapping from each constant name to a

universe element to which it is to be evaluated.
relation_interpretations: mapping from each relation name that is to

be the name of an n-ary relation, to the argument n-tuples (of
universe elements) for which the relation is to be true.

function_interpretations: mapping from each function name that is to
be the name of an n-ary function, to a mapping from each
argument n-tuple (of universe elements) to a universe element
that the function is to output given these arguments.

"""
for constant in constant_interpretations:

assert is_constant(constant)
assert constant_interpretations[constant] in universe

relation_arities = {}
for relation in relation_interpretations:

assert is_relation(relation)
relation_interpretation = relation_interpretations[relation]
if len(relation_interpretation) == 0:

arity = -1 # any
else:

some_arguments = next(iter(relation_interpretation))
arity = len(some_arguments)
for arguments in relation_interpretation:

assert len(arguments) == arity
for argument in arguments:

assert argument in universe
relation_arities[relation] = arity

function_arities = {}
for function in function_interpretations:

Chapter 7 117 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

assert is_function(function)
function_interpretation = function_interpretations[function]
assert len(function_interpretation) > 0
some_argument = next(iter(function_interpretation))
arity = len(some_argument)
assert arity > 0
assert len(function_interpretation) == len(universe)**arity
for arguments in function_interpretation:

assert len(arguments) == arity
for argument in arguments:

assert argument in universe
assert function_interpretation[arguments] in universe

function_arities[function] = arity

self.universe = frozenset(universe)
self.constant_interpretations = frozendict(constant_interpretations)
self.relation_arities = frozendict(relation_arities)
self.relation_interpretations = \

frozendict({relation: frozenset(relation_interpretations[relation])
for relation in relation_interpretations})

self.function_arities = frozendict(function_arities)
self.function_interpretations = \

frozendict({function: frozendict(function_interpretations[function])
for function in function_interpretations})

You have probably guessed by now how we would evaluate, in a model, terms that are
simply constant names, and how we would recursively evaluate terms that are function
invocations. What about variable names, though? A model specifies no interpretation
for variable names. We evaluate variable names in the following way, which may seem a
bit cryptic right now, but will become clearer once we talk about evaluating quantified
formulas: a term that contains variable names has a defined value in a given model M for
this term only once we additionally define an assignment A that assigns an element in
the universe of M to each variable name in the term.

Definition (Value of Term in Model). Given a term τ , a model M with interpretations
for (at least) the constant and function names of τ , and an assignment A for (at least) the
variable names of τ , the value of the term τ in the model M under the assignment A is
an element in the universe Ω of M that we define recursively:

• If τ is a constant name c, then its value is given directly by the model M as the
interpretation of this constant name.

• If τ is a variable name x, then its value is given directly by the assignment A.

• If τ is an n-ary function invocation f(t1,. . . ,tn), then its value is the result of ap-
plying the interpretation of the function name f (which is a function from Ωn to Ω
that is given directly by the model) to the (recursively defined) values of its argu-
ments t1,. . . ,tn in M under A.

For example, the value of the term ‘times(x,plus(1,1))’ in the above field model under
the assignment that assigns the value 4 ∈ Ω to the variable name ‘x’, is 3 ∈ Ω. If a term
has no variable names, then an assignment is not required in order to fully evaluate it in
a model using the above definition (that is, it has the same value in this model under any
assignment). For example, the value of the term ‘plus(plus(plus(plus(1,1),1),1),1)’ in the
above field model (under any assignment) is 0 ∈ Ω.

Chapter 7 118 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Task 7. Implement the missing code for the method evaluate_term(term, assignment)
of class Model, which returns the value (in the universe of the model) of the given term
under the given assignment of values to its variable names.

predicates/semantics.py

class Model:
...

def evaluate_term(self, term: Term,
assignment: Mapping[str, T] = frozendict()) -> T:

"""Calculates the value of the given term in the current model under the
given assignment of values to variable names.

Parameters:
term: term to calculate the value of, for the constant and function

names of which the current model has interpretations.
assignment: mapping from each variable name in the given term to a

universe element to which it is to be evaluated.

Returns:
The value (in the universe of the current model) of the given
term in the current model under the given assignment of values to
variable names.

"""
assert term.constants().issubset(self.constant_interpretations.keys())
assert term.variables().issubset(assignment.keys())
for function,arity in term.functions():

assert function in self.function_interpretations and \
self.function_arities[function] == arity

Task 7.7

Similarly, given a model, a predicate-logic formula, and an assignment for the free
variable names of the formula, we can recursively associate a Boolean truth value with the
formula:

Definition (Truth Value of Formula in Model). Given a formula φ, a model M with inter-
pretations for (at least) the constant, function, and relation names of φ, and an assignment
for (at least) the free variable names of φ, we define the (truth) value of the formula φ
in the model M under the assignment A recursively:

• If φ is an equality ‘t1=t2’, then its value is True if and only if in M under A the value
of the term t1 is the same element of the universe Ω of M as the value of the term
t2 (where these values, each an element of Ω, are as recursively defined above).

• If φ is an n-ary relation invocation ‘R(t1,. . . ,tn)’, then its value is True if and only if
the tuple of the values of these terms (ordered from 1 to n) in M under A is contained
in the interpretation of the relation name R in M .

• Unary and binary Boolean operations are evaluated as in propositional formulas (see
Chapter 2), with the subformulas evaluated also in M under A.

• If φ is a universally quantified formula ‘∀x[φ]’, then its value is True if and only
if φ evaluates to True in M under every assignment created from A by assigning
some element in Ω to the variable name x (this determines the values of the free
occurrences of x in φ) while leaving the values assigned to other variable names as in

Chapter 7 119 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

A; if φ is an existentially quantified formula ‘∃x[φ]’, then its value is True if and only
if φ evaluates to True in M under some (that is, one or more) assignment created
from A by assigning some element in Ω to the variable name x (this determines the
values of the free occurrences of x in φ) while leaving the values assigned to other
variable names as in A.

Note that analogously to the case of terms, a formula only has a defined value in a
given model once we additionally define an assignment that gives a value to each of its free
variable names (such an assignment is needed when evaluating any term in this formula
that contains occurrences of variable names that are free occurrences with respect to the
full formula). For example, since in the formula ‘∀x[times(x,y)=x]’ the variable name ‘y’ is
free, this formula only has a defined truth value if an additional assignment assigns a value
to ‘y’, while the variable name ‘x’ need not be explicitly assigned a value by the assignment
because by definition, since it is bound by a universal quantification, we go over all possible
values for it when evaluating the formula. The truth value of this formula in the above
field model is True under an assignment that assigns the value 1 ∈ Ω to the variable name
‘y’, and False under any assignment that assigns any other value (in {0, 2, 3, 4}) to ‘y’.

Analogously to terms, if a formula has no free variable names, then an assign-
ment is not required in order to fully evaluate it in a model using the above defini-
tion (that is, it has the same value in the model under any assignment). For exam-
ple, the truth value of the formula ‘∀x[∃y[times(x,y)=1]]’ in the above field model (un-
der any assignment) is False, while that of the formula ‘∀x[(x=0|∃y[times(x,y)=1])]’ is
True, and so is that of the formula ‘∀x[plus(plus(plus(plus(x,x),x),x),x)=0]’. Similarly, in
that model the truth value of the formula ‘∀x[(x=0|IsPrimitive(x))]’ is False, and that
of the formula ‘∀x[(IsPrimitive(x)→∀y[(y=0|(y=x|(y=times(x,x)|(y=times(times(x,x),x)|
y=times(times(times(x,x),x),x)))))])]’ is True.

Note that the above definitions imply that we interpret an occurrence of a variable name
in any specific context by the innermost scope containing it that defines an assignment for
it: the innermost quantification if such exists, or the given assignment (which in this sense
defines an assignment for the “global scope” of the entire formula that is evaluated) if there
exists no such quantification (i.e., if that occurrence of the variable name is free). Thus,
in the (algebraically nonsensical) formula ‘(x=0|(∃x[IsPrimitive(x)→∀x[times(x,x)=1]]))’,
both occurrences of ‘x’ in ‘times(x,x)’ are bound by (i.e., when evaluated, will get their
value from the assignment corresponding to) the universal quantifier, while the occurrence
of ‘x’ in ‘IsPrimitive(x)’ is bound by the existential quantifier and the occurrence of ‘x’ in
‘x=0’ is free and its value must be given by an assignment in order to evaluate this formula.
Note that the subformula ‘(∃x[IsPrimitive(x)→∀x[times(x,x)=1]])’ can be evaluated in a
model without requiring any value to be given to ‘x’ by an assignment, since there are no
free occurrences of ‘x’ in it.
Task 8. Implement the missing code for the method evaluate_formula(formula,
assignment) of class Model, which returns the truth value of the given formula under
the given assignment of values to its free variable names.

predicates/semantics.py

class Model:
...

def evaluate_formula(self, formula: Formula,
assignment: Mapping[str, T] = frozendict()) -> bool:

"""Calculates the truth value of the given formula in the current model
under the given assignment of values to free occurrences of variable

Chapter 7 120 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

names.

Parameters:
formula: formula to calculate the truth value of, for the constant,

function, and relation names of which the current model has
interpretations.

assignment: mapping from each variable name that has a free
occurrence in the given formula to a universe element to which
it is to be evaluated.

Returns:
The truth value of the given formula in the current model under the
given assignment of values to free occurrences of variable names.

"""
assert formula.constants().issubset(

self.constant_interpretations.keys())
assert formula.free_variables().issubset(assignment.keys())
for function,arity in formula.functions():

assert function in self.function_interpretations and \
self.function_arities[function] == arity

for relation,arity in formula.relations():
assert relation in self.relation_interpretations and \

self.relation_arities[relation] in {-1, arity}
Task 7.8

Finally, as we will see we will many times be interested in checking whether a formula
evaluates to True in a given model under all possible assignments to its free variable
names. In this case, as in Propositional Logic, we will say that this model is a model of
this formula. We will furthermore be interested in evaluating like this not merely a single
formula but a whole set of formulas. The last task of this chapter is to implement a helper
method that performs this.
Task 9. Implement the missing code for the method is_model_of(formulas) of class
Model, which returns whether the model is a model of each of the given formulas, regardless
of which values from the universe of the model are assigned to its free variable names.

predicates/semantics.py

class Model:
...

def is_model_of(self, formulas: AbstractSet[Formula]) -> bool:
"""Checks if the current model is a model of the given formulas.

Parameters:
formulas: formulas to check, for the constant, function, and

relation names of which the current model has interpretations.

Returns:
``True`` if each of the given formulas evaluates to true in the
current model under any assignment of elements from the universe of
the current model to the free occurrences of variable names in that
formula, ``False`` otherwise.

"""
for formula in formulas:

assert formula.constants().issubset(
self.constant_interpretations.keys())

for function,arity in formula.functions():
assert function in self.function_interpretations and \

Chapter 7 121 Draft; comments welcome

DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

self.function_arities[function] == arity
for relation,arity in formula.relations():

assert relation in self.relation_interpretations and \
self.relation_arities[relation] in {-1, arity}

Task 7.9

Chapter 7 122 Draft; comments welcome

	1 Syntax
	2 Semantics

