This material will be published by Cambridge University Press as:
Mathematical Logic through Python by Yannai A. Gonczarowski and Noam Nisan

This pre-publication version is free to view and download for personal use only. Not for re-distribution,
re-sale or use in derivative works. Please link to: www.LogicThruPython.org
© Yannai A. Gonczarowski and Noam Nisan 2017-2021.

Chapter 10:

Working with Predicate Logic Proofs

In this chapter we will introduce a specific axiomatic system for Predicate Logic, and
prove some theorems using this system. You will be asked both to prove things “manually”
and to implement some helper functions/methods that will make writing proofs easier (but
no worries—you will not be asked to re-implement inline_proof () for Predicate Logic).

1 Our Axiomatic System

Our axiomatic system will of course have the following components that you have already
dealt with in the Proof class in Chapter 9:

o Inference Rules. As specified in Chapter 9, we have only two inference rules:

— Modus Ponens (MP): From ¢ and ‘(¢—)’, deduce v. (Just like in Propo-

sitional Logic.)

— Universal Generalization (UG): From ¢ deduce ‘Vz[¢]. Note that ¢ may
have z as a free variable name (and may of course have any other free variable
name).

» Tautologies (“imported” from Propositional Logic). As discussed in Chapter 9, we
directly allow all (predicate-logic) tautologies as axioms purely for convenience, as
it is also possible instead to leverage our analysis from the first part of this book to
prove them from the schema equivalents of the axioms of Propositional Logic.

— Tautology: Any formula ¢ that is a tautology. Note that we allow tautologies
to have free variable names, such as in the tautology ‘((R(x)&Q(x))—R(x))

In addition to the above, our axiomatic system will also have the following six ad-
ditional axiom schemas that deal with quantification and equality, which will be part of
the assumptions/axioms of every proof that you will write from this point onward. These
schemas are defined as constants in the file predicates/prover.py inside the class Prover,
which we will discuss below.

o Quantification Axioms. These ensure that the universal and existential quantifiers
have the meanings that we want:

— Universal Instantiation (UI): the schema ‘(Vz[p(x)]—¢(7))’, where ¢(0),
x, and 7 are (placeholders for) a parametrized formula, a variable name, and a
term respectively.

171 Draft; comments welcome

www.LogicThruPython.org

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

[predicates/prover.py]

class Prover:

#: Axiom schema of universal instantiation
UI = Schema(Formula.parse('(Ax[R(x)]->R(c))"), {'R', 'x', 'c'})

— Existential Introduction (EI): the schema ‘(¢(7)—3z[p(x)])’, where ¢(0),
x, and 7 are a parametrized formula, a variable name, and a term respectively.

[predicates/prover.py]

class Prover:

#: Axiom schema of existential introduction
EI = Schema(Formula.parse('(R(c)->Ex[R(x)]1)"), {'R', 'x', 'c'})

— Universal Simplification (US): the schema ‘(Vz[(Y—¢(x))]| = (v —=Vz[p(x)]))’,
where 9 is a (parameter-less) formula, ¢(0d) is a parametrized formula, and x
is a variable name. Note that the rules from Chapter 9 that define the legal
instances of schemas require in particular that (the formula that is substituted
for) ¢ does not have (the variable that name is substituted for) x as a free
variable name.

[predicates/prover.py]

class Prover:

#: Axiom schema of universal simplification
US = Schema(Formula.parse (' (Ax[(QO)->R(x))]1->(QO->Ax[R(x)I))"),
{IQI, IRI, IXI})

— Existential Simplification (ES): the schema ‘((Vz[(¢(x)—)]|&3x[p(x)]) =),
where 9 is a formula, ¢(0) is a parametrized formula, and z is a variable name.
Note once more that the rules from Chapter 9 that define the legal instances of
schemas require in particular that ¢ does not have x as a free variable name.

[predicates/prover.pyj

class Prover:

#: Axiom schema of existential simplification
ES = Schema(Formula.parse (' ((Ax[(R(x)->QO)1&Ex[R(x)]1)->Q0) "),
{IQI, IRI, IXI})

o Equality Axioms. These ensure that the equality relation has the meaning that we
want:!

— Reflexivity (RX): the schema ‘T7=7’, where 7 is a term.

Tt is instructive to compare these two equality axioms with the formulas that you created in Chapter 8
to capture the properties of the interpretation of the 'SAME' relation name that replaced equality there.
RX of course corresponds to the reflexivity property, and ME in particular also implies being respected
by all relation interpretations. What about symmetry and transitivity, though? As it turns out—you will
show this in Tasks 6 and 9 below—these can be deduced from RX and ME due to the fact that ME allows
substitution in arbitrary formulas and not only in relation invocations.

Chapter 10 172 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

[predicates/prover.py]

class Prover:

#: Axiom schema of reflexivity
RX = Schema(Formula.parse('c=c'), {'c'})

— Meaning of Equality (ME): the schema ‘(1=0—(¢(1)—¢(0)))’, where ¢(0)
is a parametrized formula, and 7 and o are terms.

[predicates/prover.pyj

class Prover:

#: Axiom schema of meaning of equality
ME = Schema(Formula.parse('(c=d->(R(c)->R(d)))'), {'R', 'c', 'd'})

[predicates/prover.py]

class Prover:

#: Axiomatic system for Predicate Logic, comnsisting of “UI", “EI', “US",
#: "ES°, "RX", and "ME".
AXIOMS = frozenset({UI, EI, US, ES, RX, ME})

We once again emphasize that we explicitly allow our proofs to use formulas that are not
sentences, i.e., to use formulas that have free variable names. As discussed in Chapter 9,
this gives a convenient way to manipulate formulas using tautologies and MP.? However,
notice that a formula ¢(x1,...,z,) whose free variable names are z1,...,z, is essentially
equivalent to the sentence V1 [Vas[- - - Va,[d(z1,. . .,2,)] - -]]’, not only semantically (which
it is by definition of how we evaluate universal quantifications and formulas with free
variable names) but also, using our axiomatic system, syntactically within a proof. Indeed,
the inference rule of Universal Generalization (UG) allows us to deduce from the former
formula the latter one (by applying UG with the variable name =z, then with the variable
name x, 1, etc.), while the axiom schema of Universal Instantiation (UI) allows us to
deduce from the latter formula the former one (by instantiating UI with the placeholder 7
substituted by the term ‘z;’, then with the placeholder 7 substituted by the term ‘zs’,
etc.).

Our first order of business is to verify that the above axiom schemas are sound. While
for our axioms of Propositional Logic (and for their schema equivalents for Predicate Logic)
this was an easy finite check, for the above axiom schemas this is no longer the case, as
even for a single instance of any of these schemas there are infinitely many possible models,
and no clear “shortcut” for showing that only finitely many values in these models affect
its value. We will thus have to resort to “standard” mathematical proofs for proving the
soundness of these axiom schemas:®

2Recall that the propositional skeleton of any predicate-logic formula with a quantification at its
root, such as ‘Vx[(Q(x)—(P(x)—Q(x)))]’, is simply a propositional variable name, and therefore not a
tautology, and so such formulas are not considered axiomatic in our system. On the other hand, the
propositional skeleton of ‘(Q(x)—(P(x)—Q(x)))’ is a tautology, and so it is an axiom of our system.

3While these “standard” mathematical proofs will convince you that these axiom schemas are sound,
we note that we do have a problem of circularity here: if we ever wanted to formalize these mathematical
proofs (that prove the soundness of these axiom schemas) as Proof objects, we would in fact need these
axiom schemas—whose soundness these proofs prove—for formalizing these proofs. This is precisely why

Chapter 10 173 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Lemma. The siz axiom schemas Ul, FI, US, ES, RX, and MFE are sound.

Proof. We will prove this for the axiom schema UI. The proof for each of the other five
axiom schemas is either similar or easier.

We have to prove that every instance of the schema UI is sound. This may seem
intuitively trivial: if ‘¢(z)’ holds for every possible value of x, then ‘¢p(7)" should hold
regardless of the value of 7. However, as we have already seen in Chapter 9, due to
the possibility of certain variable names appearing in the parametrized formula that is
substituted for the placeholder ¢([0) or in the term that is substituted for the placeholder 7
in this schema, there in fact would have been non-sound instances of UI were it not for the
two rules that we defined in Chapter 9 that restrict the legal instances of schemas. The
entirety of this proof will in fact be dedicated to carefully verifying that these two rules
suffice to “rule out” every possible issue of this sort, or in other words, that indeed subject
to these two rules, every conceivable instance of Ul really is sound.*

Our proof will therefore intimately depend on the two rules from Chapter 9 that de-
fine the legal instances of schemas. Let ‘(VZ[)]—¢)’ be an instance of UI obtained by
instantiating Ul by substituting some variable name for the placeholder z in Ul, some
parametrized formula ¢(J) for the placeholder ¢(0) in UT (so 4" is the result of substitut-
ing the instantiated argument 7 into the parametrized formula ¢([1)), and some term 7 for
the placeholder 7 in UT (so ‘¢’ is the result of substituting the instantiated argument 7 into
the parametrized formula gZ;(D)) without violating any of these two rules from Chapter 9.

We will first claim that if we take ¥ and replace every free occurrence of 7 in it by 7, then
we obtain £.° To see this, we notice that by the definition of instantiating parametrized
template relation names, the only difference between v and £ is that some occurrences of &
in 9 (those that are the result of substituting # for the parameter [J of ¢(7)) have in their
stead a 7 in £&. We have to show that these occurrences of ¥ in) are precisely all the free
occurrences of in ¢»—mno more and no less. By the first rule from Chapter 9 that defines
the legal instances of schemas, the formula ng(D) does not have any free occurrences of 7.
Therefore, every free occurrence of 7 in v is the result of substituting & for the parameter [
of &(D) and therefore has in its stead a 7 in £. By the second rule from Chapter 9 that
defines the legal instances of schemas, when 7 is substituted into ¢(0J) it does not get
bound by a quantifier in ¢(0J). Therefore, only free occurrences of Z in ¢ are the result of
substituting Z for the parameter [] of gzg(D) and therefore only these occurrences of have
in their stead a 7 in £. So, the occurrences of Z in v that have in their stead a 7 in £ are all
the free occurrences of ¥ in ¥ and only these occurrences. So, £ is the result of replacing
every free occurrence of T in ¢ by 7.

We will now claim that whenever the instance ‘(Vz[i)] —¢)’ is evaluated in any model M
(that has interpretations for all its constant, function, and relation names), under any
assignment A (to its free variable names), the value of every variable name occurrence in &
that originates in 7 (when substituted for the parameter [J of ¢([J)) gets its values from A.
Indeed, by the second rule from Chapter 9 that defines the legal instances of schemas, no

axioms are needed in Mathematics: to avoid such circularity, we must assume something without a proof.
We nonetheless write a “standard” mathematical proof for the soundness of these axiom schemas (even
though this proof will implicitly assume things about quantifications, equality, etc.), to convince ourselves
that they are reasonable axiom schemas to assume.

4As noted, we defined these two rules precisely to make sure that all legal instances of each of our six
axiom schemas are sound (and that these schemas have rich enough legal instances for our proofs).

5In fact, the traditional way to define Ul is via such replacements rather than via parametrized formulas.
We chose the latter so that our schema syntax may be more intuitive for programmers.

Chapter 10 174 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

such variable name occurrence gets bound by a quantifier in (5([]), and therefore every
such variable name occurrence is free in ‘(VZ[¢)]—¢)’, and so gets its value from A.

We are now ready to show that ‘(Vz[i¢)|—=¢)’ sound, i.e., evaluates to True in any
model M, under any assignment A. By definition of how the implies operator is evaluated,
it is enough to show that for any such model M and assignment A for which ‘VZ[¢]’
evaluates to True, £ also evaluates to True. So let M and A be such so that ‘Vz[y]
evaluates to True. Let o be the element in the universe of M to which 7 evaluates in M
under A. As we have argued, each of the variable name occurrences in £ that originates
in 7 gets its value from A when ¢ is evaluated. Therefore, and since ¢ is the result of
replacing every free occurrence of & in ¢ by 7, we have that the value of £ in M under A
is the value of ¥ in M under the assignment created from A by assigning the element «
to the variable name z. But this value is True (which is what we want to prove!) since
by the definition of ‘VZ[¢)]" evaluating to True in M under A, we have that i evaluates to
True in M under any assignment created from A by assigning any element in the universe
of M to the variable name 7. O

Combining the above lemma with the Soundness Theorem for Predicate Logic, we
therefore obtain that any inference proven from these six axiom schemas is sound.

In this chapter, you will write proofs using the above axiomatic system, by using the
Proof class that you built in Chapter 9, with UI, EI, US, ES, RX, and ME as axioms
(in addition to any assumptions) in every proof that you will write. In some of the tasks
below, you are asked to write some proof; the corresponding programming task is to return
an object of class Proof that has as assumptions/axioms the axiom schemas Ul, EI, US,
ES, RX, and ME, as well as the assumptions/axioms specified in that task, and has the
specified conclusion (and is a valid proof, of course. ..). Manually writing these proofs may
turn out to be a bit (OK, very) cumbersome, so you will not work directly with the Proof
class, but rather with a new class called Prover that “wraps around” the Proof class and
provides a more convenient way to write proofs.

e [predicates/prover.py] ~

class Prover:
"""A class for gradually creating a predicate-logic proof from given
assumptions as well as from the six axioms (TAXIOMS®) Universal
Instantiation (TUI'), Existential Introduction (TEI), Universal
Simplification (TUS), Existential Simplification (TES), Reflexivity
("RX*), and Meaning of Equality (TME™).

Attributes:
_assumptions: the assumptions/axioms of the proof being created, which
include ~AXIOMS®.
_lines: the lines so far of the proof being created.
_print_as_proof_forms: flag specifying whether the proof being created
is being printed in real time as it forms.
nnn
_assumptions: FrozenSet[Schemal
_lines: List[Proof.Line]
_print_as_proof_forms: bool

def __init__(self, assumptions: Collection[Union[Schema, Formula, strl],
print_as_proof_forms: bool=False):
"""Tnitializes a ~Prover ™ from its assumptions/additional axioms. The
proof created by the prover initially has no lines.

Chapter 10 175 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Parameters:
assumptions: the assumptions/axioms beyond “AXIOMS™ for the proof
to be created, each specified as either a schema, a formula that
constitutes the unique instance of the assumption, or the string
representation of the unique instance of the assumption.
print_as_proof_forms: flag specifying whether the proof to be
created is to be printed in real time as it forms.
nnn
self._assumptions = \
Prover.AXIOMS.union(
{assumption if isinstance(assumption, Schema)
else Schema(assumption) if isinstance(assumption, Formula)
else Schema(Formula.parse(assumption))
for assumption in assumptions})
self._lines = []
self._print_as_proof_forms = print_as_proof_forms
if self._print_as_proof_forms:
print ('Proving from assumptions/axioms:\n'

' AXIOMS')
for assumption in self._assumptions - Prover.AXIOMS:
print(' ' + str(assumption))
rint('Lines:"')
- P /

4

A single instance of class Prover is used to “write” a single proof that initially has
no lines when the prover is constructed, and which the methods of the prover can be
used to gradually extend. As can be seen, for your convenience the constructor of class
Prover is very flexible with respect to the types of the arguments that it can take:
while Proof assumptions are schemas, they can be passed to the Prover constructor
not only as objects of type Schema, but also as objects of type Formula and even as
their string representations, and the Prover constructor will convert them to type Schema.
This flexibility is also a feature of the other methods of class Prover. For example, the
method add_instantiated_assumption(), which adds an assumption line to the proof
being created by the prover, can take the added instance not only as a Formula object
but also as its string representation, and can even have string representations instead
of Formula and Term objects in the instantiation map that it takes. The basic meth-
ods of class Prover, which we have already implemented for you, are add_assumption(),
add_instantiated_assumption(), add_tautology(), add mp(), and add_ug(). Each of
these methods adds to the proof being created by the prover a single line justified by one
of the four allowed justification types, and we will get to know them momentarily.®

In addition to the above basic methods that add a single line to the proof being created
by the prover, some of the tasks below will ask you to implement more advanced methods
of the Prover class, each of which will add to the proof being created several lines with
a single call. Important: In all of these methods that you will implement, you will of
course access the _lines instance variable of the current Prover object that holds the
lines already added to the proof being created, however you should never modify this
instance variable directly via self. lines, but only via the methods add_assumption(),
add_instantiated_assumption(), add_tautology(), add_mp(), and add_ug() (or via
other methods that you will have already implemented). By convention, each of these
Prover methods (the basic ones mentioned above and the additional ones that you will
implement) returns the line number, in the proof being created by the prover, of the last

6You can ignore the additional already-implemented method add_proof() for the duration this
chapter—you will use this method, which is a predicate-logic equivalent of sorts of the inline_proof ()
function that you implemented for Propositional Logic, in Chapters 11 and 12.

Chapter 10 176 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

(or the only) line that was added—the line that holds the conclusion that the method was
asked to deduce.

Once you are done adding all desired lines to a prover, you can obtain the final proof,
as an object of class Proof, by calling the ged() method of the prover.

(; B
s Kpredlcates/prover.py) ~

class Prover:

def qed(self) -> Proof:
"""Concludes the proof created by the current prover.

Returns:
A valid proof, from the assumptions of the current prover as well as
TAXIOMS™ ', of the formula justified by the last line appended to the
current prover.

nnn

conclusion = self._lines[-1].formula

if self._print_as_proof_forms:
print('Conclusion:', str(conclusion) + '. QED\n')

\\ return Proof(self._assumptions, conclusion, self._lines)

2 Syllogisms
From Wikipedia (“Syllogism,” 2021, para. 1):”

A syllogism (Greek: syllogismos, ‘conclusion, inference’) is a kind of logical
argument that applies deductive reasoning to arrive at a conclusion based on
two propositions that are asserted or assumed to be true.

In its earliest form, defined by Aristotle, from the combination of a general
statement (the major premise) and a specific statement (the minor premise), a
conclusion is deduced. For example, knowing that all men are mortal (major
premise) and that Socrates is a man (minor premise), we may validly conclude
that Socrates is mortal.

Let us try to formalize and prove the above syllogism in our system.
Assumptions: (In addition to the six axiom schemas Ul, EI, US, ES, RX, ME)
1. ‘¥x[(Man(x)—Mortal(x))]’
2. ‘Man(aristotle)’
Conclusion:® ‘Mortal(aristotle)’
Proof:

1. ‘vx[(Man(x)—Mortal(x))]’. Justification: first assumption.

"Wikipedia, The Free Encyclopedia, s.v. “Syllogism,” (accessed June 22, 2021),
https://en.wikipedia.org/w/index.php?title=Syllogism&oldid=1028905379.

8We have replaced Socrates with Aristotle in our conclusion not as a philosophical statement of any sort,
but rather to make the conclusion (and the formulas in the proof) look more intuitive in our predicate-logic
language, in which ‘aristotle’ is a valid constant name but ‘socrates’ is not.

Chapter 10 177 Draft; comments welcome

https://en.wikipedia.org/w/index.php?title=Syllogism&oldid=1028905379

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

2. ‘(Vx[(Man(x)—Mortal(x))]—(Man(aristotle)—Mortal(aristotle)))’. Justification: UI
with ¢(0) defined as ‘(Man(J)—Mortal((J))’, with = defined as ‘x’, and with 7
defined as ‘aristotle’.

3. ‘(Man(aristotle)—Mortal(aristotle))’. Justification: MP from Steps 1 and 2.
4. ‘Man(aristotle)’. Justification: second assumption.

5. ‘Mortal(aristotle)’. Justification: MP from Steps 4 and 3.

A programmatic implementation of the above proof (and of all other proofs from
this chapter) using the Prover class can be found in a corresponding function in the
file predicates/some_proofs.py.

(i 2
/ kpredlcates/some_proofs.py) \

def prove_syllogism(print_as_proof_forms: bool = False) -> Proof:
"""Proves from the assumptions:

1. All men are mortal ('Ax[(Man(x)->Mortal(x))]'), and
2. Aristotle is a man ('Man(aristotle)')

the conclusion: Aristotle is mortal ('Mortal(aristotle)').

Parameters:
print_as_proof_forms: flag specifying whether the proof is to be printed
in real time as it is being created.

Returns:
A valid proof of the above inference via “Prover.AXIOMS®.
prover = Prover ({'Ax[(Man(x)->Mortal(x))]', 'Man(aristotle)'},
print_as_proof_forms)
stepl = prover.add_assumption('Ax[(Man(x)->Mortal(x))]")
step2 = prover.add_instantiated_assumption(
'(Ax[(Man(x) ->Mortal (x))]->(Man(aristotle)->Mortal (aristotle))) ',
Prover.UI, {'R': '(Man(_)->Mortal(_))', 'c': 'aristotle'})
step3 = prover.add_mp('(Man(aristotle)->Mortal(aristotle))', stepl, step2)
step4 = prover.add_assumption('Man(aristotle)')
stepb = prover.add_mp('Mortal(aristotle)', step4, step3)
9 return prover.qged()

J

This is a good opportunity to start to get to know the Prover class by going over the
above Python implementation and comparing it to the above proof. In both programming
and text, it is a tad annoying to go through Step 2 to obtain Step 3, so in the next task
you will write a helper method called add_universal instantiation() that can do this
automatically for you and allows for the following shorter implementation:

(i B
/ kpredlcates/some_proofs.py) \

def prove_syllogism_with_universal_instantiation(print_as_proof_forms: bool =
False) -> Proof:
"""Using the method “Prover.add_universal_instantiation®, proves from the
assumptions:

1. All men are mortal ('Ax[(Man(x)->Mortal(x))]'), and
2. Aristotle is a man ('Man(aristotle)')

the conclusion: Aristotle is mortal ('Mortal(aristotle)').

Chapter 10 178 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Parameters:
print_as_proof_forms: flag specifying whether the proof is to be printed
in real time as it is being created.

Returns:
A valid proof, created with the help of the method
“Prover.add_universal_instantiation®, of the above inference via
TAXIOMS® .

prover = Prover ({'Ax[(Man(x)->Mortal(x))]', 'Man(aristotle)'},

print_as_proof_forms)

stepl = prover.add_assumption('Ax[(Man(x)->Mortal(x))]")

step2 = prover.add_universal_instantiation(
' (Man(aristotle)->Mortal (aristotle))', stepl, 'aristotle')

step3 = prover.add_assumption('Man(aristotle)')

step4 = prover.add_mp('Mortal(aristotle)', step3, step2)

_ return prover.qed())

Task 1. Implement the missing code for the method add universal instantiation(
instantiation, line number, term) of class Prover, which adds to the prover a se-
quence of validly justified lines, the last of which has the formula instantiation.® The
line with the given line number must hold a universally quantified formula ‘Vz[¢(x)]" for
some variable name = and formula ¢(x), and the derived formula instantiation should
have the given term substituted into the free occurrences of x in ¢(z).

(: A
Ve kpredlcates/prover.pyj ~

class Prover:

def add_universal_instantiation(self, instantiation: Union[Formula, str],
line_number: int, term: Union[Term, str]) \
-> int:

"""Appends to the proof being created by the current prover a sequence
of validly justified lines, the last of which validly justifies the
given formula, which is the result of substituting a term for the
outermost universally quantified variable name in the formula in the
specified already existing line of the proof.

Parameters:
instantiation: conclusion of the sequence of lines to be appended,
specified as either a formula or its string representation.
line_number: line number in the proof of a universally quantified
formula of the form 'A x” [“statement™]'.
term: term, specified as either a term or its string representation,

that when substituted into the free occurrences of “x° in
“statement® yields the given formula.

Returns:
The line number of the newly appended line that justifies the given
formula in the proof being created by the current prover.

Examples:

9The instantiation parameter can also be passed as a string representation of a formula. The code
of the method that we have already implemented for you converts it to a Formula if needed. The same
holds for all Formula and Term objects passed, whether directly as arguments or even indirectly within
maps, to any of the Prover methods that you will be asked to implement below.

Chapter 10 179 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

If Line “line_number” contains the formula
"Ay[Az[f (x,y)=g(z,y)]]' and “term™ is 'h(w)', then “instantiation”
should be 'Az[f(x,h(w))=g(z,h(w))]".
nnn
if isinstance(instantiation, str):
instantiation = Formula.parse(instantiation)
assert line_number < len(self._lines)
quantified = self._lines[line_number] .formula
assert quantified.root == 'A'
if isinstance(term, str):
term = Term.parse(term)
assert instantiation ==
quantified.statement.substitute({quantified.variable: term})
_ # Task 10.1 Y

Example: If we have in Line 17 of the proof being created by a prover prover the formula
Vy[(Q(y,z)—R(w,y))]’, then the call

prover.add_universal instantiation('(Q(f(1,w),z)->R(w,f(1,w)))"',
17, 'f(1,w)")

will add to the proof a few lines, the last of which has the formula
QUL w),2) = R(w,f(1,w)))"

Let us try to formalize and prove another syllogism: All Greeks are human, all humans
are mortal; thus, all Greeks are mortal.

Assumptions:
1. ‘¥x[(Greek(x)—Human(x))]’
2. ‘Vx[(Human(x)—Mortal(x))]’
Conclusion: ‘Vx|[(Greek(x)—Mortal(x))]’
Proof:
1. ‘¥x[(Greek(x)—Human(x))]’. Justification: first assumption.

2. ‘(Greek(x)—Human(x))" Justification: universal instantiation of Step 1 (substitut-
ing the term ‘x’ for the quantification variable name ‘x’).

3. ‘Vx[(Human(x)—Mortal(x))]". Justification: second assumption.
4. ‘(Human(x)—Mortal(x))" Justification: universal instantiation of Step 3.

5. ‘((Greek(x)—Human(x))—((Human(x)—Mortal(x))—(Greek(x)—Mortal(x)))).
Justification: a tautology.

6. ‘((Human(x)—Mortal(x))—(Greek(x)—Mortal(x)))’ Justification: MP from Steps
2 and 5.

7. ‘(Greek(x)—Mortal(x))’. Justification: MP from Steps 4 and 6.

8. ‘Vx[(Greek(x)—Mortal(x))]. Justification: UG of Step 7.

Chapter 10 180 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

(; B
Ve Kpredlcates/some_proofs.pyJ ™

def prove_syllogism_all_all(print_as_proof_forms: bool = False) -> Proof:
"""Proves from the assumptions:

1. All Greeks are human ('Ax[(Greek(x)->Human(x))]'), and
2. A1l humans are mortal ('Ax[(Human(x)->Mortal(x))]')

the conclusion: All Greeks are mortal ('Ax[(Greek(x)->Mortal(x))]').

Parameters:
print_as_proof_forms: flag specifying whether the proof is to be printed
in real time as it is being created.

Returns:
A valid proof of the above inference via “Prover.AXIOMS®.
prover = Prover ({'Ax[(Greek(x)->Human(x))]', 'Ax[(Human(x)->Mortal(x))]'},
print_as_proof_forms)
stepl = prover.add_assumption('Ax[(Greek(x)->Human(x))]"')
step2 = prover.add_universal_instantiation(
' (Greek(x)->Human(x))', stepl, 'x')
step3 = prover.add_assumption('Ax[(Human(x)->Mortal(x))]"')
step4 = prover.add_universal_instantiation(
' (Human (x) ->Mortal(x))', step3, 'x')
stepb = prover.add_tautology(
' ((Greek (x)->Human (x)) ->((Human (x) ->Mortal (x)) ->(Greek (x) ->Mortal (x)))) ')
step6 = prover.add_mp(
' ((Human (x) ->Mortal (x)) ->(Greek (x)->Mortal(x))) ', step2, stepb)
step7 = prover.add_mp('(Greek(x)->Mortal(x))', step4, step6)
step8 = prover.add_ug('Ax[(Greek(x)->Mortal(x))]', step7)
S return prover.qed() D,

Steps 57 of the above proof seem a bit cumbersome, so in the next task you will write
a helper method called add_tautological_implication() that provides an easier way
to derive a tautological implication of previous lines and allows for the following shorter
implementation:!?

(i 2
/ kpredlcates/some_proofs.py) \

def prove_syllogism_all_all_with_tautological_implication(print_as_proof_forms:
bool = False) -> \
Proof:
"""Using the method “Prover.add_tautological_implication”, proves from the
assumptions:

1. All Greeks are human ('Ax[(Greek(x)->Human(x))]'), and
2. A1l humans are mortal ('Ax[(Human(x)->Mortal(x))]')

10Tt is instructive to compare the 6-step proof that follows not only with its 8-step version that we have
just given, which already makes some shortcuts by using universal instantiation steps, but also with its full
10-step version that we gave as an example of a proof in the beginning of Chapter 9. Together, the ability
to use both universal instantiation steps and tautological implication steps allows us to cut the number of
explicitly specified proof steps almost in half. The number of actual lines in the resulting proof does not
change, of course, but what we are interested in is making our life when coding proofs easier, which being
able to explicitly specify considerably fewer steps (and this will of course be even more significant in more
elaborate proofs) certainly does. Indeed, the shortcuts that you are accumulating under your belt in this
chapter will together save you from explicitly specifying more than just a few proof steps in tasks below
and in the following chapters.

Chapter 10 181 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

the conclusion: All Greeks are mortal ('Ax[(Greek(x)->Mortal(x))]').

Parameters:
print_as_proof_forms: flag specifying whether the proof is to be printed
in real time as it is being created.

Returns:
A valid proof, created with the help of the method
“Prover.add_tautological_implication™, of the above inference via
TAXIOMS® .

prover = Prover ({'Ax[(Greek(x)->Human(x))]', 'Ax[(Human(x)->Mortal(x))]'},

print_as_proof_forms)

stepl = prover.add_assumption('Ax[(Greek(x)->Human(x))]"')

step2 = prover.add_universal_instantiation(
' (Greek(x)->Human(x))', stepl, 'x')

step3 = prover.add_assumption('Ax[(Human(x)->Mortal(x))]"')

step4 = prover.add_universal_instantiation(
' (Human (x) ->Mortal(x))', step3, 'x')

stepb = prover.add_tautological_implication(
' (Greek(x)->Mortal(x))', {step2, step4})

step6 = prover.add_ug('Ax[(Greek(x)->Mortal(x))]', stepb)

return prover.qed() D,

\

Similar to the propositional skeleton of a single predicate-logic formula, we define the
propositional skeleton of a predicate-logic inference as the propositional-logic inference
rule obtained from the predicate-logic inference by consistently (across all of the assump-
tions and the conclusion) replacing each (outermost) subformula whose root is a relation
name, an equality, or a quantifier, with a new propositional variable name. For example,
the propositional skeleton of the predicate-logic inference with assumptions ‘(R(x)|Q(y))’
and ‘~R(x)” and conclusion ‘Q(y)’ is the propositional-logic inference rule with assump-
tions ‘(z1|z2)" and ‘~z1” and conclusion ‘z2’. We say that a (predicate-logic) formula ¢ is
a (predicate-logic) tautological implication of some set of (predicate-logic) formulas
A if the propositional skeleton (a propositional-logic inference rule) of the predicate-logic
inference with assumptions A and conclusion ¢ is sound.!!

Task 2. Implement the missing code for the method add_tautological implication(
implication, line_numbers) of class Prover, which adds to the prover a sequence of
validly justified lines, the last of which has the formula implication. The derived formula
implication should be a tautological implication of the formulas from the lines with the
given line numbers.

(i B
Ve Kpredlcates/prover.py) ™

class Prover:

def add_tautological_implication(self, implication: Union[Formula, str],
line_numbers: AbstractSet[int]) -> int:
"""Appends to the proof being created by the current prover a sequence
of validly justified lines, the last of which validly justifies the
given formula, which is a tautological implication of the formulas in

1We once again use the terminology the propositional skeleton somewhat misleadingly, as there are
many propositional skeletons for any given predicate-logic inference. For example, the inference rule with
assumptions ‘(z3|z4)’ and ‘~z3’ and conclusion ‘z4’ is also a propositional skeleton of the above predicate-
logic inference. There is once again no problem here, though, since either all propositional skeletons of a
given predicate-logic inference are sound, or none are.

Chapter 10 1892 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

the specified already existing lines of the proof.

Parameters:
implication: conclusion of the sequence of lines to be appended,
specified as either a formula or its string representation.
line_numbers: line numbers in the proof of formulas of which
“implication” is a tautological implication.

Returns:
The line number of the newly appended line that justifies the given
formula in the proof being created by the current prover.

if isinstance(implication, str):
implication = Formula.parse(implication)

for line number in line_numbers:
assert line_number < len(self._lines)

_ # Task 10.2)

Hint: Think back to your solution to Task 4 in Chapter 6 (the implementation of
prove_sound_inference()), and understand why a formula ¢ is a tautological impli-
cation of some set of formulas A if and only if the (predicate-logic) formula that “encodes”
the inference with assumptions A and conclusion ¢ is a predicate-logic tautology.

One nice thing about your solution to Task 2 is that it allows you to never bother
with “double MP” maneuvers again, even when the original conditional statement (the
statement of the form ‘(¢p—(1»—¢))’) is not a tautology. If you have somehow proven the
three statements ‘(¢—(1¥—¢))’, ¢, and ®, then instead of deriving & from these using a
“double MP” maneuver (first deriving ‘(¢»—¢)’ via MP, and then deriving £ via yet another
MP), you can instead derive £ as a tautological implication of these three statements in
one proof step (i.e., using one Python line).

Finally, let us try to formalize and prove the syllogism that we gave as our first example
in the beginning of Chapter 7: All men are mortal, some men exist; thus, some mortals
exist.

Assumptions:
1. ‘vx[(Man(x)—Mortal(x))]’
2. ‘Ix[Man(x)]’
Conclusion: ‘Ix[Mortal(x)]’
Proof:
1. ‘vx[(Man(x)—Mortal(x))]’. Justification: first assumption.
2. ‘Ix[Man(x)|’. Justification: second assumption.
3. ‘(Man(x)—Mortal(x))’. Justification: universal instantiation of Step 1.

4. ‘(Mortal(x)—3x[Mortal(x)])’. Justification: EI with ¢([J) defined as ‘Mortal((])’ and
with z and 7 both defined as ‘x’.

5. ‘{(Man(x)—3x[Mortal(x)])". Justification: tautological implication of Steps 3 and 4.

6. ‘Vx[(Man(x)—3x[Mortal(x)])]. Justification: UG of Step 5.

Chapter 10 183 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

7. ‘((Vx[(Man(x)—3x[Mortal(x)])|&Ix[Man(x)])—Ix[Mortal(x)]). Justification: ES
with ¢(0) defined as ‘Man()’, with = defined as ‘x’, and with ¢ defined as
‘Ix[Mortal(x)]” (which does not have ‘x’ free).

8. ‘Ix[Mortal(x)]’. Justification: tautological implication of Steps 2, 6, and 7.

(i 2
/ kpredlcates/some_proofs.py) \

def prove_syllogism_all_exists(print_as_proof_forms: bool = False) -> Proof:
"""Proves from the assumptions:

1. All men are mortal ('Ax[(Man(x)->Mortal(x))]'), and
2. Some men exist ('Ex[Man(x)]')

the conclusion: Some mortals exist ('Ex[Mortal(x)]').

Parameters:
print_as_proof_forms: flag specifying whether the proof is to be printed
in real time as it is being created.

Returns:
A valid proof of the above inference via
" “predicates.prover.Prover.AXIOMS™.
prover = Prover ({'Ax[(Man(x)->Mortal(x))]', 'Ex[Man(x)]'},
print_as_proof_forms)
stepl = prover.add_assumption('Ax[(Man(x)->Mortal(x))]"')
step2 = prover.add_assumption('Ex[Man(x)]"')
step3 = prover.add_universal_instantiation(
' (Man(x)->Mortal(x))', stepl, 'x')
step4 = prover.add_instantiated_assumption(
' (Mortal (x)->Ex[Mortal(x)])', Prover.EI,
{'R': 'Mortal()', 'c': 'x'})
stepb = prover.add_tautological_implication(
' (Man(x)->Ex[Mortal(x)])', {step3, step4l})
step6 = prover.add_ug('Ax[(Man(x)->Ex[Mortal(x)])]', stepb)
step7 = prover.add_instantiated_assumption(
' ((Ax[(Man(x)->Ex[Mortal (x)])]&Ex[Man(x)])->Ex[Mortal(x)])', Prover.ES,
{'R': 'Man(_)', 'Q': 'Ex[Mortal(x)]'})
step8 = prover.add_tautological_implication(
'Ex[Mortal(x)]', {step2, step6, step7})
9 return prover.qged() D,

The maneuver in the last three steps of the above proof is quite useful in general,
where the idea is that once we have shown that some = with a property ‘P(x)’ exists (e.g.,
'Ex[Man(x)]'), and that ‘(P(z)—Q)" (e.g., ' (Man(x)->Ex[Mortal(x)])"'), then we can
deduce @ (e.g., 'Ex[Mortal(x)]"'). In the next task you will write a helper method
called add_existential derivation() that automates this maneuver and allows for the
following shorter implementation:

(i 2
/ kpredlcates/some_proofs.py) \

def prove_syllogism_all_exists_with_existential_derivation(print_as_proof_forms:
bool = False) —> \
Proof:
"""Using the method "~ “predicates.prover.Prover.add_existential_derivation~,
proves from the assumptions:

Chapter 10 184 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

1. All men are mortal ('Ax[(Man(x)->Mortal(x))]'), and
2. Some men exist ('Ex[Man(x)]')

the conclusion: Some mortals exist ('Ex[Mortal(x)]').

Parameters:
print_as_proof_forms: flag specifying whether the proof is to be printed
in real time as it is being created.

Returns:
A valid proof, created with the help of the method
" “predicates.prover.Prover.add_existential_derivation”, of the above
inference via ~“predicates.prover.Prover.AXIOMS" .
prover = Prover ({'Ax[(Man(x)->Mortal(x))]', 'Ex[Man(x)]'},
print_as_proof_forms)
stepl = prover.add_assumption('Ax[(Man(x)->Mortal(x))]"')
step2 = prover.add_assumption('Ex[Man(x)]"')
step3 = prover.add_universal_instantiation(
' (Man(x)->Mortal(x))', stepl, 'x')
step4 = prover.add_instantiated_assumption(
' (Mortal (x)->Ex[Mortal(x)])', Prover.EI, {'R': 'Mortal()', 'c': 'x'})
stepb = prover.add_tautological_implication(
' (Man(x)->Ex [Mortal(x)])', {step3, stepdl})
step6 = prover.add_existential_derivation('Ex[Mortal(x)]', step2, step5)
return prover.qged() Y,

\

Task 3. Implement the missing code for the method add_existential derivation(
consequent, line numberl, line number2) of class Prover, which adds to the prover
a sequence of validly justified lines, the last of which has the formula consequent. The line
with number line_numberl must hold an existential formula ‘Jz[¢(z)]” (for some variable
name) and the line with number line_number2 must hold the implication ‘(¢(z)—1)’,
where 1 is the derived formula consequent.

(i B
Ve kpredlcates/prover.pyj ~

class Prover:

def add_existential_derivation(self, consequent: Union[Formula, str],
line_numberl: int, line_number2: int) -> int:

"""Appends to the proof being created by the current prover a sequence
of validly justified lines, the last of which validly justifies the
given formula, which is the consequent of the formula in the second
specified already existing line of the proof, whose antecedent is
existentially quantified by the formula in the first specified already
existing line of the proof.

Parameters:

consequent: conclusion of the sequence of lines to be appended,
specified as either a formula or its string representation.

line_numberl: line number in the proof of an existentially
quantified formula of the form 'E'x” [Tantecedent(x)]', where
“x° is a variable name that may have free occurrences in
“antecedent (x)” but has no free occurrences in ~consequent’ .

line_number2: line number in the proof of the formula
' (Cantecedent (x) *->" consequent”)'.

Returns:

Chapter 10 185 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

The line number of the newly appended line that justifies the given
formula in the proof being created by the current prover.

nnn

if isinstance(consequent, str):
consequent = Formula.parse(consequent)

assert line_numberl < len(self._lines)

quantified = self._lines[line_numberl] .formula

assert quantified.root == 'E'

assert quantified.variable not in consequent.free_variables()

assert line_number2 < len(self._lines)

conditional = self._lines[line_number2] .formula

assert conditional == Formula('->', quantified.statement, consequent)

_ # Task 10.3 Y,

It is now finally time for you to prove a few statements on your own. The func-
tions that you are asked to implement the next two tasks are contained in the file
predicates/some_proofs.py.

Task 4. Prove the following inference:
Assumptions:

1. Everybody loves somebody: ‘Vx[Jy[Loves(x,y)]]’

2. Everybody loves a lover:'? ‘¥x[Vz|Vy[(Loves(x,y)—Loves(z,x))]]]’
Conclusion: Everybody loves everybody: ‘Vx[Vz[Loves(z,x)]]’

The proof should be returned by the function prove_lovers(), whose missing code you
should implement.

(predi)
/ Kpredlcates/some_proofs.pyJ \

def prove_lovers(print_as_proof_forms: bool = False) -> Proof:
"""Proves from the assumptions:

1. Everybody loves somebody ('Ax[Ey[Loves(x,y)]]'), and
2. Everybody loves a lover ('Ax[Az[Ay[(Loves(x,y)->Loves(z,x))]11]1")

the conclusion: Everybody loves everybody ('Ax[Az[Loves(z,x)]]').

Parameters:
print_as_proof_forms: flag specifying whether the proof is to be printed
in real time as it is being created.

Returns:
A valid proof of the above inference via “Prover.AXIOMS®.
nnn
prover = Prover ({'Ax[Ey[Loves(x,y)]]"',
'"Ax[Az[Ay[(Loves(x,y)->Loves(z,x))]11]'},
print_as_proof_forms)

Task 10.4

12An astute reader may notice that it would also have been possible to understand (and formalize)
this sentence in various other ways, such as ‘Vz[3x[Jy[(Loves(x,y)&Loves(z,x))]]]’ (“each person loves some
lover”) or ‘Ix[Jy[(Loves(x,y)&Vz[Loves(z,x)])]]’ (“there is some lover that everybody loves”). Indeed, as
already remarked in passing, human-language sentences are many times not easy to understand, let alone
without context. We think that in the context of the famous song by this name, though, “everybody loves
a lover” is meant as in our understanding of it: “everybody loves every lover”.

Chapter 10 186 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

k\ return prover.qed() J)

Task 5. Prove the following inference:
Assumptions:

1. No homework is fun: ‘~3x[(Homework(x)&Fun(x))]’

2. Some homework is reading: ‘Ix[(Homework(x)&Reading(x))]’
Conclusion: Some reading is not fun: ‘Ix[(Reading(x)&~Fun(x))]’

The proof should be returned by the function prove_homework (), whose missing code you
should implement.

(; B
Ve kpredlcates/some_proofs -PY) ~

def prove_homework(print_as_proof_forms: bool = False) -> Proof:
"""Proves from the assumptions:

1. No homework is fun ('“Ex[(Homework(x)&Fun(x))]'), and
2. Some reading is homework ('Ex[(Homework(x)&Reading(x))]')

the conclusion: Some reading is not fun ('Ex[(Reading(x)& Fun(x))]').

Parameters:
print_as_proof_forms: flag specifying whether the proof is to be printed
in real time as it is being created.

Returns:
A valid proof of the above inference via “Prover.AXIOMS".
prover = Prover ({' Ex[(Homework(x)&Fun(x))]',
'"Ex [(Homework (x)&Reading(x))] '}, print_as_proof_forms)
Task 10.5
return prover.ged()
" e J

Hint: Notice that for any formula ¢, we have that ‘¢p—3x[¢| is an instance of EIL
Use this once for deriving ‘~(Homework(x)&Fun(x))’, and once again for deriving
‘((Reading(x)&~Fun(x))—3x[(Reading(x)&~Fun(x))]). Note that since the left-hand side
of the latter formula is not true in general, you'll need to use this latter formula in a clever
way in your proof in order to derive its right-hand side... but how? Well, since you have
not used your second assumption yet, it is time to use it, and since it is existentially quan-
tified, you will have to use it via an existential derivation. Can you see how what you have
proven so far can be used to prove the other formula needed for the existential derivation
to give you the desired overall conclusion?

3 Some Mathematics

We now move on to using logic to express basic mathematical structures. In particular we
will use functions and equality much more.

Chapter 10 187 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

3.1 Groups

We start with one of the simplest mathematical structures, that of a group. While a field
has two operators: addition and multiplication, a group only has one operator, which we
will denote by addition. The language in which we will describe a group has, accordingly,
two function names—a binary function name ‘plus’ and a unary function name ‘minus’—
and a constant name ‘0’. A group has only three axioms:

Group Axioms:
e Zero Axiom: ‘plus(0,x)=x’
« Negation Axiom: ‘plus(minus(x),x)=0’

 Associativity Axiom: ‘plus(plus(x,y),z)=plus(x,plus(y,z))’

[predicates/some_proofs . py]

#: The three group axioms
GROUP_AXIOMS = frozenset({'plus(0,x)=x', 'plus(minus(x),x)=0',
'plus (plus(x,y),z)=plus(x,plus(y,z))'})

While our programs will stick to this simple functional notation, in this chapter we will
use the equivalent standard, infix notation for better readability:

o Zero Axiom: 0 +x ==z
o Negation Axiom: —z + 2 =10
o Associativity Axiom: (r+y)+z=x+ (y+ 2)

We note that group addition may possibly be non-commutative, i.e., it is not necessarily
the case that x +y = y + x. Therefore, since we only defined 0 to be neutral to addition
when it is on the left, it is not clear that it is also neutral to addition when it is on the
right (i.e., it is not clear that also x +0 = z). However, it turns out that one can carefully
prove this from the three group axioms, and we will now formulate this proof.

Assumptions: Group Axioms
Conclusion: z+0==x

Proof:

We will trace and formalize the following mathematical proof, which you may have seen
written on the board if you took a course on Algebraic Structures. The basic “trick” of
this proof is to add the term (— — x + —z) on the left:

r4+0=0+(x+0)=0+2)+0=((-—2+—2)+2)+0=
=(——z+4+(-2+2)+0=(——-24+0)+0=—-—2+(0+0) =
=——z4+0=——z+(—2z+z)=(——ax+—-2)+z=0+2z ==

Let us formalize this proof in our system. We start by listing the axioms as the first steps
of the proof:

1. 04+ x = z. Justification: Zero Axiom.
2. —x 4+ x = 0. Justification: Negation Axiom.

3. (t+y)+2z=ax+ (y+ 2). Justification: Associativity Axiom.

Chapter 10 188 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

(; B
Ve Kpredlcates/some_proofs.pyj ™~

def prove_group_right_neutral(.--, print_as_proof_forms: bool = False) -> Proof:
"""Proves from the group axioms that x+0=x ('plus(x,0)=x').

Parameters:

print_as_proof_forms: flag specifying whether the proof is to be printed
in real time as it is being created.

Returns:
A valid proof of the above inference via “Prover.AXIOMS®.
prover = Prover (GROUP_AXIOMS, print_as_proof_forms)
zero = prover.add_assumption('plus(0,x)=x")
negation = prover.add_assumption('plus(minus(x),x)=0"')
associativity = prover.add_assumption('plus(plus(x,y),z)=plus(x,plus(y,z))"')

_— Y,

We will also want to use the “flipped” equalities that follow from these axioms by the
symmetry of equality. While we have not defined the symmetry of equality as a logical
axiom, it can be derived from the logical axioms of equality (RX and ME), and the next
task will provide a convenient interface to doing so and performing this kind of flipping.

Task 6. Implement the missing code for the method add_flipped_equality(flipped,
line number) of class Prover, which adds to the prover a sequence of validly justified
lines, the last of which has the formula f1ipped. The derived formula flipped must be
of the form ‘r=¢’ (for some terms 7 and o), where the line with the given line_number
must hold the “non-flipped” equality ‘c=7".

(; B
Ve kpredlcates/prover.pyj ™

class Prover:

def add_flipped_equality(self, flipped: Union[Formula, str],
line_number: int) -> int:
"""Appends to the proof being created by the current prover a sequence
of validly justified lines, the last of which validly justifies the
given equality, which is the result of exchanging the two sides of the
equality in the specified already existing line of the proof.

Parameters:
flipped: conclusion of the sequence of lines to be appended,
specified as either a formula or its string representation.
line_number: line number in the proof of an equality that is the
same as the given equality, except that the two sides of the
equality are exchanged.

Returns:
The line number of the newly appended line that justifies the given
equality in the proof being created by the current prover.

nnn

if isinstance(flipped, str):
flipped = Formula.parse(flipped)

assert is_equality(flipped.root)

assert line_number < len(self._lines)

equality = self._lines[line_number].formula

assert equality == Formula('=', [flipped.arguments[1],

Chapter 10 189 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

flipped.arguments[0]])
Task 10.6

We can continue our proof:

4. x = 0+ z. Justification: flipped Zero Axiom.
5. 0 = —x + x. Justification: flipped Negation Axiom.

6. x4 (y+ z) = (v +y) + z. Justification: flipped Associativity Axiom.

(i 2
// kpredlcates/some_proofs.py) \\

def prove_group_right_neutral(.--, print_as_proof_forms: bool = False) -> Proof:

flipped_zero = prover.add_flipped_equality('x=plus(0,x)', zero)
flipped_negation = prover.add_flipped_equality(
'0=plus (minus(x) ,x)', negation)
flipped_associativity = prover.add_flipped_equality(
'plus(x,plus(y,z))=plus(plus(x,y),z)', associativity)

N /

Notice that early in the above mathematical proof, we used the equality 0 =
— — x + —x, so we should certainly derive it somewhere in our proof. This equation is an
instance of the flipped negation axiom, obtained by plugging —z into x. We can derive it
in our proof by first applying UG to the flipped negation axiom to obtain Vz[0 = —z + x|,
and then using our add_universal instantiation() method, substituting —z into x.

The next task will provide a convenient interface to performing this kind of derivation,
and will also allow making several substitutions in one call.

Task 7. Implement the missing code for the method add_free_instantiation(
instantiation, line number, substitution map) of class Prover, which adds to
the prover a sequence of validly justified lines, the last of which has the formula
instantiation. The derived formula instantiation should be the result of substituting
free variable names of the formula in the line with the given number with terms, according
to the given map, which maps variable names to terms.

Ve [predicates/prover.py] ~

class Prover:

def add_free_instantiation(self, instantiation: Union[Formula, str],

line_number: int,

substitution_map:

Mappingl[str, Union[Term, str]]) -> int:
"""Appends to the proof being created by the current prover a sequence
of validly justified lines, the last of which validly justifies the
given formula, which is the result of substituting terms for free
variable names in the formula in the specified already existing line of
the proof.

Parameters:
instantiation: conclusion of the sequence of lines to be appended,
which contains no variable names starting with "~z °, specified
as either a formula or its string representation.
line_number: line number in the proof of a formula with free
variable names, which contains no variable names starting with

Chapter 10 190 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

substitution_map: mapping from free variable names of the formula
with the given line number to terms that contain no variable
names starting with ““z 7, to be substituted for them to obtain
the given formula. Each value of this map may also be given as a
string representation (instead of a term). Only variable name
occurrences originating in the formula with the given line
number are substituted (i.e., variable names originating in one
of the specified substitutions are not subjected to additional

substitutions).

Returns:
The line number of the newly appended line that justifies the given
formula in the proof being created by the current prover.

Examples:
If Line “line_number” contains the formula
' (z=b&Az[f (x,y)=g(z,y)])' and ~substitution_map” is
{'y': 'h(w)', 'z': 'y'}" ", then “instantiation™ should be
' (y=5&Az[f (x,h(w))=g(z,h(w))])"'.
nnn
if isinstance(instantiation, str):
instantiation = Formula.parse(instantiation)
assert line_number < len(self._lines)
substitution_map = dict(substitution_map)
for variable in substitution_map:
assert is_variable(variable)
term = substitution_map[variable]
if isinstance(term, str):
substitution_map[variable] = term = Term.parse(term)
for variable in term.variables():
assert variable[0] !'= 'z'
assert instantiation ==
self._lines[line_number] .formula.substitute(substitution_map)
for variable in instantiation.variables():
assert variable[0] !'= 'z'
_ # Task 10.7)

Example: If we have in Line 17 of the proof being created by a prover prover the formula
‘plus(x,y)=plus(y,x)’, then the call

prover.add_free_instantiation('plus(f(y),g(x,0))=plus(g(x,0),f(y))",
17, {'x': £y, 'y': 'gx,0)'}H)

will add to the proof a few lines, the last of which has the formula ‘plus(f(y),g(x,0))=
plus(g(x,0).£(y)).

Guidelines: As mentioned above, substituting a term into a single variable
name is easy by calling the method add_ug() and then calling the method
add_universal instantiation(). While in simple cases this could be done sequentially
for all variable names in the given substitution map, a sequential substitution will not
give the required results if the substituted terms themselves contain in them some of the
substituted variable names. For instance, in the example above, if we first replaced ‘x’
with ‘f(y)’ to obtain the intermediate formula ‘plus(f(y),y)=plus(y,f(y))’, then a second-
stage replacement of ‘y’ with ‘g(x,0)” would also incorrectly cause ‘f(y)’ to be replaced with
‘f(g(x,0))’, obtaining the formula ‘plus(f(g(x,0)),g(x,0))=plus(g(x,0),f(g(x,0)))” instead of
the requested ‘plus(f(y),g(x,0)) =plus(g(x,0),f(y)). To avoid this, first sequentially re-
place all variable names that need to be instantiated with new variable names, e.g., in

Chapter 10 191 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

our example obtaining an intermediate formula ‘plus(z1,z2)=plus(z2,z1)" (remember that
next(fresh variable_name_generator) is your friend. ..), and then instantiate each of
these temporary unique variable names with the target term.

We can now obtain arbitrary instances of the basic rules, so here is a good place in our
proof to list those that we will need:

7.0 = — — x + —x. Justification: free instantiation of the flipped Negation Axiom,
substituting z with —z.

8. — —x+ —x = 0. Justification: flipped equality of Step 7.

9. (——x+—x)+2x=——x+ (—x+). Justification: free instantiation of the Asso-
ciativity Axiom, substituting x with — — x, substituting y with —z, and substituting
z with z.

10. 0+ 0 = 0. Justification: free instantiation of the Zero Axiom, substituting « with 0.

(predi)
/ Kpredlcates/some_proofs -PY | \

def prove_group_right_neutral(---, print_as_proof_forms: bool = False) -> Proof:

step7 = prover.add_free_instantiation(

'0=plus (minus (minus(x)) ,minus(x))', flipped_negation, {'x': 'minus(x)'})
step8 = prover.add_flipped_equality(

'plus (minus (minus(x)) ,minus(x))=0', step7)
step9 = prover.add_free_instantiation(

'plus (plus (minus (minus(x)) ,minus(x)) ,x)="

'plus (minus (minus(x)) ,plus (minus(x),x))',

associativity, {'x': 'minus(minus(x))', 'y': 'minus(x)', 'z': 'x'})
stepl0 = prover.add_free_instantiation('plus(0,0)=0', zero, {'x': '0'})

NI)

We can now “really start” tracing the mathematical proof above, step by step:

11. x +0 = 04 (x + 0). Justification: free instantiation of the flipped Zero Axiom,
substituting » with (z + 0).

12. 0+ (z+0) = (04 z)+ 0. Justification: free instantiation of the flipped Associativity
Axiom, substituting and z with 0, and substituting y with x.

(; B
/ Kpredlcates/some_proofs -PY | ~

def prove_group_right_neutral(---, print_as_proof_forms: bool = False) -> Proof:

stepll = prover.add_free_instantiation(
'plus(x,0)=plus(0,plus(x,0))', flipped_zero, {'x': 'plus(x,0)'})
stepl2 = prover.add_free_instantiation(
'plus (0, plus(x,0))=plus(plus(0,x),0)', flipped_associativity,
{IX': ‘O', Iyl: ‘X', |Zl: |Ol})

N Y,

Chapter 10 1992 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

The next thing that we would like to deduce is (0+z)+0 = ((— —2z+—x)+2)+0, by
“substituting” both sides of the equality 0 = — — x + —x from Step 7 into the expression
(O+x)+0. This type of substitution can be performed using the logical axioms of equality
(RX and ME), and your solution to the following task will provide a convenient interface
to performing it.

Task 8. Implement the missing code for the method add_substituted_equality(
substituted, line number, parametrized_term) of class Prover, which adds to the
prover a sequence of validly justified lines, the last of which has the formula substituted.
The line with number line_number must hold an equality ‘T=0¢’ (for some terms 7 and o)
and the derived formula substituted should be ‘¢(7)=¢(c)’, where ¢(0O) is the given
parametrized term.

(; B
Ve kpredlcates/prover.pyj ™

class Prover:

def add_substituted_equality(self, substituted: Union[Formula, str],
line_number: int,
parametrized_term: Union[Term, str]) -> int:
"""Appends to the proof being created by the current prover a sequence
of validly justified lines, the last of which validly justifies the
given equality, whose two sides are the results of substituting the two
respective sides of the equality in the specified already existing line
of the proof into the given parametrized term.

Parameters:

substituted: conclusion of the sequence of lines to be appended,
specified as either a formula or its string representation.

line_number: line number in the proof of an equality.

parametrized_term: term parametrized by the constant name '_',
specified as either a term or its string representation, such
that substituting each of the two sides of the equality with the
given line number into this parametrized term respectively
yields each of the two sides of the given equality.

Returns:
The line number of the newly appended line that justifies the given
equality in the proof being created by the current prover.

Examples:
If Line ~line_number” contains the formula 'g(x)=h(y)' and
“parametrized_term” is '_+7', then “substituted® should be
'g(x)+7=h(y)+7".
nnn
if isinstance(substituted, str):
substituted = Formula.parse(substituted)
assert is_equality(substituted.root)
assert line_number < len(self._lines)
equality = self._lines[line_number].formula
assert is_equality(equality.root)
if isinstance(parametrized_term, str):
parametrized_term = Term.parse(parametrized_term)
assert substituted ==
Formula('=', [parametrized_term.substitute(
{'_': equality.arguments[0]}),
parametrized_term.substitute(

Chapter 10 193 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

L

{'_': equality.arguments[1]})])
Task 10.8

We can now continue with our proof:

1

w

14.

15.

16.

17.

18.

19.

20.

(04+2)+0=((——x+ —x) +z) + 0. Justification: substituting both sides of the
equality 0 = — — x + —z from Step 7 into the expression (O + x) + 0.

(m—z+—-2)+2)+0=(——x+ (—z+=x))+0. Justification: substituting both
sides of the equality (— — 2+ —z) + 2 = — —x + (—z + z) from Step 9 into the
expression]+ 0.

(——z+(—x+4+2))+0=(——2+0)+ 0. Justification: substituting both sides of
the equality —z + x = 0 from Step 2 into the expression (— —x +) + 0.

(——2+0)+0=——2+(0+0). Justification: free instantiation of the Associativity
Axiom, substituting with — — x and substituting y and 2z with 0.
——x+4+(040) =——x+0. Justification: substituting both sides of the equality

0+ 0 =0 from Step 10 into the expression — — x + .

——2+4+0=——2x+ (—z+). Justification: substituting both sides of the equality
0 = —x 4 x from Step 5 into the expression — — z + .

——z+4+ (—z+2z) = (— -2+ —x) + x. Justification: free instantiation of the
flipped Associativity Axiom, substituting x with — — x, substituting y with —z, and
substituting z with x.

(— —2+ —x) 4+ 2 =0+ 2. Justification: substituting in both sides of the equality
— — x4+ —x =0 from Step 8 into the expression [J+ z.

def

(; B
kpredlcates/some_proofs -PY J ~

prove_group_right_neutral(--., print_as_proof_forms: bool = False) -> Proof:

stepl3 = prover.add_substituted_equality(
'plus (plus(0,x),0)=plus (plus(plus (minus (minus(x)) ,minus(x)),x),0)"',
step7, 'plus(plus(_,x),0)")
stepl4 = prover.add_substituted_equality(
'plus (plus (plus (minus(minus(x)) ,minus(x)),x),0)="
'plus (plus (minus (minus(x)) ,plus(minus(x),x)),0) "',
step9, 'plus(_,0)')
steplb = prover.add_substituted_equality(
'plus (plus (minus (minus (x)) ,plus (minus(x) ,x)),0)="
'plus(plus (minus (minus(x)),0),0) ',
negation, 'plus(plus(minus(minus(x)),_),0)")
stepl6 = prover.add_free_instantiation(
'plus (plus (minus (minus(x)),0) ,0)=plus(minus (minus(x)),plus(0,0)) ',
associativity, {'x': 'minus(minus(x))', 'y': '0', 'z': '0'})
stepl7 = prover.add_substituted_equality(
'plus (minus (minus(x)) ,plus(0,0))=plus (minus (minus(x)),0)"',
step10, 'plus(minus(minus(x)),_)"')
stepl8 = prover.add_substituted_equality(
'plus (minus (minus(x)),0)=plus (minus (minus(x)) ,plus(minus(x),x))"',
flipped_negation, 'plus(minus(minus(x)),_)")
stepl9 = prover.add_free_instantiation(
'plus (minus (minus(x)) ,plus (minus(x) ,x))="

Chapter 10 194 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

'plus (plus (minus (minus(x)) ,minus(x)) ,x) ', flipped_associativity,
{'x': 'minus(minus(x))','y': 'minus(x)','z': 'x'})
step20 = prover.add_substituted_equality(
'plus (plus (minus (minus(x)) ,minus(x)) ,x)=plus(0,x) ', step8, 'plus(_,x)"')

Recalling that the Zero Axiom gives 0 + x = x, we now have a sequence of equalities
(Steps 11-20 in order, followed by Step 1) that we would like to “chain” together using
the transitivity of equality to get the final conclusion that we are after. While we have not
defined the transitivity of equality as a logical axiom, it can be derived from ME, and your
solution to the next task will provide a convenient interface to doing so and performing
this kind of chaining.

Task 9. Implement the missing code for the method add_chained_equality(chained,
line numbers) of class Prover, which adds to the prover a sequence of validly justified
lines, the last of which has the formula chained. The derived formula chained must be
of the form ‘T=¢’, where the lines with the given line_numbers hold (in the given order)
a sequence of equalities ‘m=7", ‘mo=73’, ..., ‘T,_1=7,, with 7y being 7 and 7, being o.

(; B
s Kpredlcates/prover.py) ~

class Prover:

def _add_chaining_of_two_equalities(self, line_numberl: int,
line_number2: int) -> int:
"""Appends to the proof being created by the current prover a sequence
of validly justified lines, the last of which validly justifies an
equality that is the result of chaining together the two equalities in
the specified already existing lines of the proof.

Parameters:
line_numberl: line number in the proof of an equality of the form
'“first ="second™'.
line_number2: line number in the proof of an equality of the form
'“second="third™"'.

Returns:
The line number of the newly appended line that justifies the
equality '“first ="third ' in the proof being created by the current
prover.

Examples:
If Line “line_numberl” contains the formula 'a=b' and Line
“line_number2” contains the formula 'b=f(b)', then the last appended
line will contain the formula 'a=f(b)'.

nnn

assert line_numberl < len(self._lines)

equalityl = self._lines[line_numberl] .formula

assert is_equality(equalityl.root)

assert line_number2 < len(self._lines)

equality2 = self._lines[line_number2].formula

assert is_equality(equality2.root)

assert equalityl.arguments[1] == equality2.arguments[0]

Task 10.9a

def add_chained_equality(self, chained: Union[Formula, str],
line_numbers: Sequencel[int]) -> int:

Chapter 10 195 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

"""Appends to the proof being created by the current prover a sequence
of validly justified lines, the last of which validly justifies the
given equality, which is the result of chaining together the equalities
in the specified already existing lines of the proof.

Parameters:

chained: conclusion of the sequence of lines to be appended,
specified as either a formula or its string representation,
of the form '“first ="last™'.

line_numbers: line numbers in the proof of equalities of the form
'“first ="second™', '“first ="third™', ...,
'"before_last ="last™', i.e., the left-hand side of the first
equality is the left-hand side of the given equality, the
right-hand of each equality (except for the last) is the
left-hand side of the next equality, and the right-hand side of
the last equality is the right-hand side of the given equality.

Returns:
The line number of the newly appended line that justifies the given
equality in the proof being created by the current prover.

Examples:
If “line_numbers™ is ~°[7,3,9] ", Line 7 contains the formula
'a=b', Line 3 contains the formula 'b=f(b)', and Line 9 contains the
formula 'f(b)=0', then ~chained” should be 'a=0'.
nnn
if isinstance(chained, str):
chained = Formula.parse(chained)
assert is_equality(chained.root)
assert len(line_numbers) >= 2
current_term = chained.arguments[0]
for line_number in line_numbers:
assert line_number < len(self._lines)
equality = self._lines[line_number].formula
assert is_equality(equality.root)

assert equality.arguments[0] == current_term
current_term = equality.arguments[1]
assert chained.arguments[1] == current_term
Task 10.
_ as 0.9b Y,
Guidelines: First implement the missing code for the private method

_add_chaining of two_equalities(line_numberl, line number2) that has simi-
lar functionality but with only two equalities to chain (see the method docstring for
details), and then use that method to solve this task in full generality.

We can now finally conclude our proof:

21. z + 0 = zx. Justification: chaining Steps 11-20 in order, followed by Step 1.

[predicates/some_proofs.py]

def prove_group_right_neutral(---, print_as_proof_forms: bool = False) -> Proof:

step21 = prover.add_chained_equality(
'plus(x,0)=x",
[stepll, stepl2, stepl3, stepld, steplb, stepl6, stepl7, stepl8, stepl9,

Chapter 10 196 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

(\ step20, zerol) JJ
return prover.ged()

During this proof you have developed enough helper functions to prepare yourself for
the remainder of this chapter, in which you will prove additional important mathematical
theorems. The functions that you are asked to implement the remainder of this chapter are
contained in the file predicates/some_proofs.py. We start by showing that not only is

zero neutral to addition both on the left and on the right, but this property is also unique
to zero.

Task 10. Prove the following inference:

Assumptions: Group Axioms and a +c¢=a
Conclusion: ¢ =0

The proof should be returned by the function prove_group_unique_zero(), whose missing
code you should implement.

(i B
/ kpredlcates/some_proofs . pyJ \

def prove_group_unique_zero(print_as_proof_forms: bool = False) -> Proof:
"""Proves from the group axioms and from the assumption atc=a
('plus(a,c)=a') that c=0 ('c=0").

Parameters:
print_as_proof_forms: flag specifying whether the proof is to be printed
in real time as it is being created.

Returns:
A valid proof of the above inference via “Prover.AXIOMS®.
prover = Prover (GROUP_AXIOMS.union({'plus(a,c)=a'}), print_as_proof_forms)
Task 10.10
return prover.qed()
=)

3.2 Fields

We move on from groups to fields. We will represent addition in a field using the function
name ‘plus’, multiplication in a field using the function name ‘times’; zero (the neutral to
additivity) using the constant name ‘0’; and one (the neutral to multiplication) using the
constant name ‘1’

Field Axioms:
e O+ax==x
e —z+2=0
e (x+y)+z=a+(y+2)

Chapter 10 197 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

c (zy)z=a-(y-2)
e (z#0— Fyly-z=1]) (where x # 0 should be read as ‘~x=0’, of course)

c o (y+a)=(ey)+(@-2)

[predica‘ces/some_proofs . py]

#: The six field axioms
FIELD_AXIOMS = frozenset (GROUP_AXIOMS.union(
{'plus(x,y)=plus(y,x)', 'times(x,1)=x', 'times(x,y)=times(y,x)',
'times (times(x,y) ,z)=times(x,times(y,z))', '("x=0->Ey[times(y,x)=11)",
'times(x,plus(y,z))=plus(times(x,y),times(x,2z))"'}))

Task 11. Prove the following inference:

Assumptions: Field Axioms
Conclusion: 0-z =0

The proof should be returned by the function prove field zero _multiplication(),
whose missing code you should implement.

(i B
/ kpredlcates/some_proofs -PY J \

def prove_field_zero_multiplication(print_as_proof_forms: bool = False) -> \
Proof:
"""pProves from the field axioms that O0*x=0 ('times(0,x)=0').

Parameters:
print_as_proof_forms: flag specifying whether the proof is to be printed
in real time as it is being created.

Returns:
A valid proof of the above inference via “Prover.AXIOMS®.
prover = Prover (FIELD_AXIOMS, print_as_proof_forms)
Task 10.11
return prover.qed()
=)

Hint: If you have seen a proof of this in a Linear Algebra course, you can try to formalize
that proof. Alternatively, one possible proof strategy is to first prove that 0-z4+0-2x = 0-z,
and to then continue similarly to Task 10. (Note that the field axioms for addition contain
all of the group axioms. However, we do not have a convenient interface for inlining the
solution to Task 10 in another proof as is, because of its assumption, so feel free to duplicate
code rather than build an inlining interface just for the sake of this task.)

3.3 Peano Arithmetic

Peano Arithmetic, named after the 19'"-century Italian mathematician Giuseppe Peano,
attempts to capture the natural numbers. (In Logic courses and Set Theory courses, the
natural numbers customarily start from zero rather than from one.) In Peano Arithmetic,
apart from multiplication and addition, we have the unary “successor” function, named ‘s’,
which should be thought of as returning one when applied to zero, two when applied to
one, etc.

Axioms of Peano Arithmetic:

Chapter 10 198 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

e z-s(y)=x-y+zx

« Axiom schema of induction: the schema ((¢(0)&Vz[(d(x) — ¢(s(x)))]) — Va[o(x)]),
where ¢(0J) is a placeholder for a parametrized formula.

(predi)
/ Kpredlcates/some_proofs -PY \

#: Axiom schema of induction
INDUCTION_AXIOM = Schema (

Formula.parse(' ((R(0)&Ax[(R(x)->R(s(x)))]1)->Ax[R(x)1)"'), {'R'})
#: The seven axioms of Peano arithmetic
PEANO_AXIOMS = frozenset({'(s(x)=s(y)->x=y)', '"s(x)=0', 'plus(x,0)=x',
'plus(x,s(y))=s(plus(x,y))', 'times(x,0)=0"',
'times(x,s(y))=plus(times(x,y),x)', INDUCTION_AXIOM})

= /

Note that we do not have commutativity of addition or multiplication as axioms of
Peano Arithmetic, and these need to be proven from the given axioms. Let us see an
example of a first step toward this. The axioms of Peano Arithmetic state that x-0 = 0; let
us try to prove that also 0-x = 0, which is the first step toward proving the commutativity
of multiplication in Set Theory courses.

Assumptions: Axioms of Peano Arithmetic
Conclusion: 0-x =0

Proof:

The idea is to prove the conclusion by induction (i.e., use the axiom schema of induction
with 0-0 = 0 as ¢([d)). We already know that the base case 0-0 = 0 holds. The induction
step would need to show that 0-2z = 0 — 0-s(z) = 0, and then, by induction, these should
imply that 0-z = 0 for all z. So how do we show the induction step, 0-x = 0 — 0-s(z) = 07
Well, the mathematical reasoning is simple: 0-s(z) =0-2+0=0-x = 0, where the first
equality is an instance of the sixth axiom, the second equality is an instance of the third
axiom, and the third equality is the assumption of the induction step. Let us formalize
this mathematical reasoning. We start by proving the basis of the induction:

1. £+ 0 = z. Justification: Axiom.

2. 0+ 0= 0. Justification: free instantiation of Step 1.
We proceed by proving the induction step:

3. z-s(y) =x-y+ . Justification: Axiom.

4. 0-s(x) =0-2 + 0. Justification: free instantiation of Step 3.

Chapter 10 199 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

5. 0-2+0=0-2. Justification: free instantiation of Step 1.
6. 0-s(xz) =0-z. Justification: chaining Steps 4 and 5.
7. 0-2=0-s(z). Justification: flipped equality of Step 6.
8. (0-x=0-s(x) > (0-2=0—0-s(x)=0)). Justification: an instance of ME.
9. (0-2=0—0-s(z) =0). Justification: MP from Steps 7 and 8.
10. Vz[(0-2 =0 — 0-s(z) = 0)]. Justification: UG of Step 9.
Finally we apply the axiom schema of induction:

11. (0+0=0&Vz[(0-2=0— 0-s(zx) =0)]). Justification: tautological implication of
Steps 2 and 10.

12. (040=0&Vz[(0-2 =0 — 0-s(z) =0)]) = Va[0 -z = 0]). Justification: an
instance of the axiom schema of induction.

13. Vz[0 - x = 0]. Justification: MP from Steps 11 and 12.
14. 0 -2 = 0. Justification: universal instantiation of Step 13.

In a similar way one can prove that not only x +0 = x as was given as an axiom, but
also 0+ x = x, which is the first step toward proving the commutativity of addition in Set
Theory courses, and what we ask you to do in the next task.

Task 12. Prove the following inference:

Assumptions: Axioms of Peano Arithmetic
Conclusion: 0 +z ==

The proof should be returned by the function prove_peano_left neutral(), whose miss-
ing code you should implement.

(predi)
/ Kpredlcates/some_proof_s -PY \

def prove_peano_left_neutral (print_as_proof_forms: bool = False) -> Proof:
"""Proves from the axioms of Peano arithmetic that O+x=x ('plus(0,x)=x').

Parameters:
print_as_proof_forms: flag specifying whether the proof is to be printed
in real time as it is being created.

Returns:
A valid proof of the above inference via
" “predicates.prover.Prover.AXIOMS" .
prover = Prover (PEANO_AXIOMS, print_as_proof_forms)
Task 10.12
L return prover.qed()

J

Hint: Use induction on x (i.e., use the axiom schema of induction with 0 + 0O = O
as ¢(d)). The challenge is again in proving the “induction step,” which in this case is
‘(plus(0,x)=x—plus(0,s(x))=s(x)). To prove the induction step, start by proving that
‘(plus(0,x)=x—s(plus(0,x))=s(x))’, and whenever you get stuck in the proof of the induc-
tion step, try to use ME.

Chapter 10 200 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

In the same somewhat tedious way one may continue proving the commutativity of
addition and multiplication, as well as, it turns out, (essentially) all other properties of the
natural numbers, from the fact that /2 is not a rational number (i.e. (z #0 — z -2 #
2-y-y)) to Fermat’s last theorem. Significant parts of Mathematics, such as the Theory of
Computation, may be expressed in the language of Peano Arithmetic, and these too can
be proven formally using the axioms of Peano Arithmetic. What Peano Arithmetic cannot
do, it turns out, is handle infinite objects. Doing that requires a somewhat stronger and
trickier axiomatic system, that we present next and with which we conclude this chapter.

3.4 Zermelo—Fraenkel Set Theory

Predicate Logic turns out to suffice for capturing all of Mathematics from a handful of
axioms. The standard formalization is to have sets as the basic building blocks (elements)
of our universe, and to define everything from there. That is, in terms of Predicate Logic,
there is a single binary relation name that denotes membership of an item in a set, ‘In(x,y)’,
meaning r € y.

The axioms for sets are stated so that they imply that an empty set exists (we may
or may not have a constant name () that denotes it), and once we have the empty set
we can continue to define the natural numbers as: 0 = 0, 1 = {0}, 2 = {0,{0}}, 3 =
{0,{0},{0,{0}}}, etc.,’® and the Set Theory axioms will suffice for proving all the required
properties of natural numbers (in particular all the axioms of Peano Arithmetic). Notice
however that this construction also provides sets of natural numbers, and sets of sets of
natural numbers, etc., which Peano Arithmetic does not provide. Once we have natural
numbers, we can continue defining integers, rationals, real numbers, complex numbers,
real-valued functions, vector fields, and the rest of Mathematics.

Some of the Set Theory axioms give basic intended properties for sets. For example,
the Extensionality Axiom states that two sets are equal (are the same set) if they have
the same elements. Formally, ‘Vx[Vy[(Vz[((In(z,x)—In(z,y))&(In(z,y) —1In(z,x)))] —x=y)]]"
Most of the axioms, however, are devoted to ensuring that certain types of sets exist.

To understand the need for this, let us look at our naive notion of how we get a set:
we usually specify a condition and then look at the set of all elements that satisfy it.
Formally, for every parametrized formula (condition) ¢([J) we imagine an axiom schema
of (unrestricted) comprehension stating that the set of all elements satisfying this
condition exists: Jy[Vz[r € y <> ¢(2)]].

[predicates/some_proofs.py]

#: Axiom schema of (unrestricted) comprehension
COMPREHENSION_AXIOM = Schema(
Formula.parse('Ey[Ax[((In(x,y)->R(x))&R(x)->In(x,y)))1]1"), {'R'})

However, in 1901, the British philosopher, logician, mathematician, writer, and Nobel
laureate (in Literature!) Bertrand Russell, noticed what has come to be known as “Russell’s
Paradox”: that by looking at the set {z|x & z}, the axiom schema of comprehension turns
out to lead to a contradiction. You will now formalize his argument.

Task 13. Prove the following inference:

13This encoding of the natural numbers is due to the Jewish-Hungarian-born American mathematician,
physicist, computer scientist, and game theorist John von Neumann. For more details, including why such
a seemingly cumbersome encoding of the natural numbers is needed, you are highly encouraged to take a
course on Set Theory.

Chapter 10 201 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Assumptions: Axiom schema of comprehension
Conclusion: The contradiction ‘(z=z & z#z)’

The proof should be returned by the function prove_russell _paradox (), whose missing
code you should implement.

(i B
/ kpredlcates/some_proofs -PY J \

def prove_russell_paradox(print_as_proof_forms: bool = False) -> Proof:
"""Proves from the axioms schema of unrestricted comprehension the
contradiction '(z=z& z=z)'.

Parameters:
print_as_proof_forms: flag specifying whether the proof is to be printed
in real time as it is being created.

Returns:
A valid proof of the above inference via
" “predicates.prover.Prover.AXIOMS™ .
prover = Prover ({COMPREHENSION_AXIOM}, print_as_proof_forms)
Task 10.13
L return prover.qged())

Hint: Following Russell’s Paradox, instantiate the axiom schema of unrestricted compre-
hension by defining ‘¢(0J) as ‘~In(1,0)"

We conclude that we cannot just assume that there is a set for any condition that we
wish to use (like we would have wanted the axiom schema of comprehension to guarantee),
but rather need axioms to tell us which sets exist. In particular, instead of the general ax-
iom schema of comprehension, it is customary to have a weaker axiom schema of specifica-
tion that only allows imposing conditions on elements of a given set: for every parametrized
formula (condition) ¢(0O) the following is an axiom: Vz[Jy[Vz[x € y <> (z € 2 & ¢(x))]]].
This allows one to take arbitrary subsets of a given, pre-existing set. A number of other
Set Theory axioms specify the ways in which one may go “up,” that is, build larger sets
from those that one already has: by taking unions, by taking a power set, by pairing two
items, by taking a functional image of a set, and there is also an axiom that guarantees the
existence of an infinite set. Beyond these, there is an Axiom of Foundation that essentially
states that there cannot be “cycles” of inclusion such as z € y € 2z € x. All of these axioms
together are the axiomatic basis for the celebrated Zermelo—Fraenkel (ZF) Set Theory,
named after German mathematician Ernst Zermelo and Jewish-German (and later Israeli)
mathematician Abraham Fraenkel.

Finally, mathematicians also assume, when needed, the axiom of choice that states that
for every set Z of non-empty sets there exists a function f that chooses, for each set Y € 7,
some element in Y. The resulting axiomatic system, called ZFC (Zermelo—Fraenkel with
Choice) forms the canonical basis of modern Mathematics.

Chapter 10 202 Draft; comments welcome

	1 Our Axiomatic System
	2 Syllogisms
	3 Some Mathematics
	3.1 Groups
	3.2 Fields
	3.3 Peano Arithmetic
	3.4 Zermelo–Fraenkel Set Theory

