This material will be published by Cambridge University Press as:
Mathematical Logic through Python by Yannai A. Gonczarowski and Noam Nisan

This pre-publication version is free to view and download for personal use only. Not for re-distribution,
re-sale or use in derivative works. Please link to: www.LogicThruPython.org
© Yannai A. Gonczarowski and Noam Nisan 2017-2021.

Chapter 11:

The Deduction Theorem and
Prenex Normal Form

In this chapter, we will prove two important and general tools, which beyond being useful
each on its own, will also be of utmost importance in our proof of the Completeness
Theorem for Predicate Logic in the next chapter, in which our analysis of this entire book
will culminate:

o The Deduction Theorem (for Predicate Logic), which shows (much like the Deduc-
tion Theorem for Propositional Logic, which you proved in Chapter 5) that if some
statement ¢ is provable (in Predicate Logic) from some assumptions that include an
assumption 1, then under certain mild conditions, the statement ‘(¢»—¢)’ is provable
from the same set of assumptions, without ¢). From the Deduction Theorem, much
like in Propositional Logic, we will derive a theorem on Soundness of Proofs by
Way of Contradiction in Predicate Logic.

e The Prenex Normal Form Theorem, which shows that every formula can be
transformed into an equivalent formula in prenex normal form, that is, a formula
where all quantifiers appear at the beginning (top levels) of the formula.

1 The Deduction Theorem

Recall that in Chapter 5, you have proved the Deduction Theorem for Propositional Logic,
and in particular its “hard direction” (which is often referred to by itself as the Deduction
Theorem for Propositional Logic):

Theorem (“Hard Direction” of The Deduction Theorem for Propositional Logic). Let R
be a set of inference rules that includes MP, I1, and D, and may additionally include only
inference rules with no assumptions. Let A be an arbitrary set of formulas, and let ¢ and

be two additional formulas. If AU{¢} bFr 1, then Abg ‘(p—1) .

This establishes that under certain conditions, the converse of MP holds as well: not
only can we prove 1 from some assumptions that include ¢ if we can prove ‘(¢p—1)’
from the same assumptions without ¢, but also conversely, if we can prove 1 from some
assumptions that include ¢, then (under mild conditions on the inference rules that may
be used), we can prove ‘(¢—1)’ from the same assumptions without ¢.

Since this theorem turned out to be an extremely useful tool in writing proofs in
Propositional Logic, and in particular in proving the Tautology Theorem and therefore
the Completeness Theorem for Propositional Logic, we will now prove an analogue of
this theorem for Predicate Logic. Since our proof system in Predicate Logic does not
allow for any inference rules that have assumptions except MP and UG, we will not need

203 Draft; comments welcome

www.LogicThruPython.org

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

any analogue of the condition from the above theorem regarding which inference rules may
have assumptions. The condition from that theorem on the set of inference rules containing
MP, I1, and D will be replaced, strictly speaking, by being able to use MP, UG, and all
tautologies (which all of our proofs can...), and the axiom US, which was introduced in
the previous chapter (but which we have in fact so far not used at all!).

We will also have an additional new condition that has no analogue in Propositional
Logic: that the proof of ¥ from the set of assumptions that includes ¢ does not involve
UG over any variable name that is free in ¢. Unlike the former conditions, which are
technical, this new condition is crucial. To see this, notice for example that from only the
assumption ‘y=0" (which remember that we semantically interpret as “for any assignment

o ‘y’ of an element from the universe of the model, it holds that that element is the
interpretation of ‘0”’) one can use UG over the variable name ‘y’ to deduce ‘Vy[y=0]’
(which has the exact same semantic interpretation). Nonetheless, it is not the case that
without any assumptions whatsoever, one can prove ‘(y=0—Vy[y=0])’ (which remember
that semantically we interpret as “if any element is the interpretation of zero, then this
implies that all elements are the interpretation of zero”), but this would have been implied
by the Deduction Theorem that we will state below if it were not for the constraint on
UG. Indeed, in all but very specific models (those with only one element) the formula
‘(y=0—Vy[y=0])’ is simply not satisfied. More generally, if one can prove from ‘R(x)’
that ‘Q(x)’, then due to our convention on interpreting assumptions/conclusions with free
variable names, this proof in fact shows that ‘(Vx[R(x)]—=Vx[Q(x)])’ rather than that (for
every ‘x’ separately) ‘(R(x)—Q(x))’, which has a very different semantic interpretation.
Our main uses of the Deduction Theorem for Predicate Logic will however be when ¢ is a
sentence—a formula with no free variable names at all—in which case this constraint is
always trivially satisfied regardless of the structure of the proof of ¢ from (among other
assumptions) ¢, so we will not have to worry about this constraint in that case. We will
now formally state this theorem (or rather, only its “hard part,” since its “easy part”
follows from the ability to use MP precisely as in Propositional Logic):

Theorem (The Deduction Theorem for Predicate Logic). Let A be a set of schemas that
includes US, and let ¢ and 1) be two formulas. If AU {¢} F ¢ via a proof that does not
use UG over any variable name that is free in ¢, then At ‘(¢p—1))’.

You will now prove this theorem. All of the functions that you are asked to implement
in this section are contained in the file predicates/deduction.py.

Task 1 (Programmatic Proof of the Deduction Theorem). Implement the missing code
for the function remove assumption(proof, assumption). This function takes as input
a (predicate-logic) proof of some conclusion ¢ that:

« has our six logical axiom schemas' among its assumptions/axioms,
« has the given assumption ¢ as a simple assumption/axiom (with no templates), and
o does not use UG over any variable name that is free in ¢.

The function returns a proof of ‘(¢—1))’ from the same assumptions/axioms except ¢.

"While we strictly only need US, we assume all six logical axiom schemas so that you may easily use
the Prover class in your solution.

Chapter 11 204 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

(; ; B
Ve kpredlcates/deductlon.py) ™

def remove_assumption(proof: Proof, assumption: Formula,
print_as_proof_forms: bool = False) -> Proof:
"""Converts the given proof of some “conclusion™ formula, an assumption of
which is “assumption™, to a proof of '(“assumption’->conclusion”)' from the
same assumptions except ~assumption.

Parameters:

proof: valid proof to convert, from assumptions/axioms that include
“Prover.AXIOMS" .

assumption: formula that is a simple assumption (i.e., without any
templates) of the given proof, such that no line of the given proof
is a UG line over a variable name that is free in this assumption.

print_as_proof_forms: flag specifying whether the proof of
' (Tassumption®-> conclusion’)' is to be printed in real time as it
is being created.

Returns:
A valid proof of '(“assumption’->conclusion’)' from the same
assumptions/axioms as the given proof except ~assumption’.
nnn
assert proof.is_valid()
assert Schema(assumption) in proof.assumptions
assert proof.assumptions.issuperset (Prover.AXIOMS)
for line in proof.lines:
if isinstance(line, Proof.UGLine):
assert line.formula.variable not in assumption.free_variables()

K # Task 11.1 J

Hints: As in Chapter 5, for each formula ¢ that is deduced by some line of the original
proof, the new proof should deduce ‘(¢p—¢)’; that is, the suggested strategy is to create
your proof by going over the lines of the given proof, in order, and whenever a line of the
given proof deduces some &, to add one or more lines to the new proof that together deduce
‘(p—&)”. Use tautological implications generously; when the original proof line uses UG,
you will need to work a bit harder—try to understand how to use US in this case.

As we have seen in Chapter 5, one important implication of (any version of) the Deduc-
tion Theorem is that we can use it to formally explain why a proof by way of contradic-
tion works. Recall that in a proof by way of contradiction, we make an assumption, use
it to prove the negation of an axiom (recall that we encourage you to think of a proof by
way of contradiction as a proof by way of contradicting an axiom), and deduce from
this that the assumption that we made is in fact false. Since in Predicate Logic (thanks
to your proof of the Tautology Theorem in Propositional Logic) we can use all tautologies
as axioms of our proofs, we will allow the “proof of the negation of an axiom” that we are
given to be a proof of any contradiction,? i.e., of the negation of any tautology.?

Theorem (Soundness of Proofs by Way of Contradiction in Predicate Logic). Let A be a
set of schemas that includes US, and let ¢ be a formula. If a contradiction (i.e., negation

2In some sense, this may be thought of as further justifying the common name “proof by (way of)
contradiction.”

3Similarly to Chapter 5, it is possible also in predicate logic to have other equivalent definitions for this
notion of inconsistency, and in particular ones that do not involve tautologies. For example, since every
formula is a tautological implication of a contradiction, the ability to prove a contradiction from certain
assumptions/axioms is equivalent to the ability to prove every formula from the same assumptions/axioms,
so this notion of inconsistency can be phrased in a purely syntactic way and is precisely the same as in
propositional logic.

Chapter 11 205 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

of a tautology) is provable from AU {¢} without using UG over any variable name that is
free in ¢, then At ‘~¢@’.

You will now prove this theorem. The proof will once again be considerably simpler
than the proof for Propositional Logic due to the ability to use all tautologies freely at this
point.

Task 2 (Programmatic Proof of the theorem on Soundness of Proofs by Way of Contra-
diction). Implement the missing code for the function prove_by_way_of_contradiction(
proof, assumption). This function takes as input a (predicate-logic) proof of some con-
tradiction that:

« has our six logical axiom schemas? among its assumptions/axioms,

o has the given assumption ¢ as a simple assumption/axiom (with no templates), and

e does not use UG over any variable name that is free in ¢.

The function returns a proof of ‘~¢’ from the same assumptions/axioms except ¢.

(; ; A
/ kpredlcates/deductlon.py) \

def prove_by_way_of_contradiction(proof: Proof, assumption: Formula) -> Proof:
"""Converts the given proof of a contradiction, an assumption of which is
“assumption”, to a proof of assumption™' from the same assumptions except
“assumption”.

Parameters:
proof: valid proof of a contradiction (i.e., a formula whose negation is
a tautology) to convert, from assumptions/axioms that include
“Prover.AXIOMS" .
assumption: formula that is a simple assumption (i.e., without any
templates) of the given proof, such that no line of the given proof
is a UG line over a variable name that is free in this assumption.

Returns:
A valid proof of '““assumption’' from the same assumptions/axioms as the
given proof except “assumption”.
nnn
assert proof.is_valid()
assert Schema(assumption) in proof.assumptions
assert proof.assumptions.issuperset(Prover.AXIOMS)
for line in proof.lines:
if isinstance(line, Proof.UGLine):
assert line.formula.variable not in assumption.free_variables()
_ # Task 11.2 Y,

Guidelines: Recall that Proof objects are immutable. Therefore, you cannot simply add
lines to any Proof object. Instead, construct a new Prover object, use the add_proof ()
method of that object (which we have already implemented for you) to insert all the lines
of any Proof object into the proof of this prover, and then add more lines to that proof
using the Prover API, including the methods that you implemented in Chapter 10 (and
in particular, add_tautological implication()).

4Once again, we strictly only need US.

Chapter 11 206 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

2 Prenex Normal Form

According to Wiktionary (“prenex,” 2021),> the term “prenex” comes from the Late Latin
praenezrus, meaning “bound up in front.” A formula is said to be in prenex normal form
if all of its quantifications are at the beginning / at the top-most levels. More precisely:

Definition (Prenex Normal Form). A formula is said to be in prenex normal form if
there is an initial sequence of nodes of the formula that all contain quantifications, and all
other nodes in the formula do not contain quantifications.

For example, the formula ‘Vx[3y[(R(x,y)—Q(y))]]’ is in prenex normal form, while
the formula ‘Vx[(R(x)—3y[Q(x,y)])]" is not in prenex normal form since the existential
quantification is only on the second part of the implication (or more precisely, the implies
node, which is not a quantification node, precedes the node of that quantification). The
formula ‘Vx[(y[R(x,y)]—=Q(x))] is similarly not in prenex normal form since the existential
quantification is only on the first part of the implication (and again the implies node
precedes it). In this section, we will explore this form. The functions that you are asked to
implement in this section are contained in the file predicates/prenex.py unless otherwise
noted.

Task 3. Implement the missing code for the function is_in_prenex normal form(
formula), which checks whether a given formula is in prenex normal form.

(i B
Ve kpredlcates/prenex.pyj ~

def is_quantifier_free(formula: Formula) -> bool:
"""Checks if the given formula contains any quantifiers.

Parameters:
formula: formula to check.

Returns:
““False™ "~ if the given formula contains any quantifiers, ~“True "
otherwise.

Task 11.3a

def is_in_prenex_normal_form(formula: Formula) -> bool:
"""Checks if the given formula is in prenex normal form.

Parameters:
formula: formula to check.

Returns:
“"True” "~ if the given formula in prenex normal form, "~ “False "
otherwise.
_ # Task 11.3b Y
Guidelines: First implement the missing code for the recursive function

is_quantifier_ free(formula), which checks whether a given formula contains no quan-
tifiers, and then use that function to solve this task.

SWiktionary, The Free Dictionary, s.v. “prenex,” (accessed June 22 2021),
https://en.wiktionary.org/w/index.php?title=prenex&oldid=60445646.

Chapter 11 207 Draft; comments welcome

https://en.wiktionary.org/w/index.php?title=prenex&oldid=60445646

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

As you will show in this section, and this will be incredibly useful in the next chapter,
every formula can be converted into prenex normal form, and moreover, the equivalence
of the original formula and the one in prenex normal form is provable by a predicate-logic
proof via just our four logical axiom schemas of quantification from Chapter 10:

Theorem (The Prenex Normal Form Theorem). For every formula ¢ there exists an

equivalent formula v in prenex normal form, such that the equivalence between ¢ and 1
(i.e., ‘((p—=)&(v—))’) is provable from Ul, EI, US, and ES.

The idea of this conversion is to use various logical equivalences to “pull out” the
quantifications. This becomes doable if we make sure that quantified variable names in
different parts of the formula do not “clash” with one another, nor with the free variable
names of the formula, so that each variable name occurrence remains bound by the same
quantifier, or remains free, before and after “pulling out” the quantifications, despite the
scopes of the various quantifications having changed. Specifically, let be a variable name,
let ¢(z) be an arbitrary formula, and let i) be a formula that does not have x as a free
variable name. Then the following logical equivalences can be used to “pull out” the
quantifications:

1. ‘“Vz[p(x)] is equivalent to ‘Fz[~¢(z

]

~— ~—

2. ‘~Jz[p(z)] is equivalent to Vr[~p(x

3. ‘(Va[o(x)&n) is equivalent to Va(é(z)&w)]
4. ‘(Fz[o(x)]&)’ is equivalent to ‘Tz[(¢(z)&w)]"
5. ‘(b&Va[b(x)]) is equivalent to Va(&e(x))]
6. ‘(v&3x[b(x))) is equivalent to ‘Tu[(Y&e(x))]

(¢(z)

(¢(z)

9. ‘(|Va[o(x)]) is equivalent to Var|(1]e(
2)])’ s equivalent to ‘Je[(¢]¢(x

11. ‘(Va[p(z)] =) is equivalent to ‘Fz[(¢(x)—)]
| =)’ is equivalent to “Va[(¢(z)—v)].
)
)

)
)
(
10. (¢ 3z[g(
) ()
) ()
()
()

12. ‘(Fz[p(x

(

(

(

(

(
8. ‘(3x[o(x)]|¥) is equivalent to ‘Tz[(¢

(

(

(

(
13. ‘(Yp—=Vzx[p(x)]) is equivalent to Vz[(v—d(z))].
14. ‘(Yp—Tx[p(x)]) is equivalent to ‘Tz[(Yv—d(x))].

Each of these equivalences “pulls” a quantification “out” of a logical operator, so multi-
ple applications of these equivalences will pull all of the quantifications outside. When we
say above that a formula L “is equivalent to” a formula R, it is more than just saying that
they have the same value in all models. Indeed, we are actually stating that the formula
‘((L=-R)&(R—L)) is provable from our four logical axiom schemas of quantification. As
noted, all the above equivalences require that) does not have x as a free variable name. If

Chapter 11 208 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

1) does happen to have x as a free variable name, then we can easily change the quantifica-
tion to be over some other variable name, since ‘Vz[¢(z)]” is equivalent to ‘Vz[¢(2)]" (and
similarly, ‘Jz[¢(x)]" is equivalent to ‘Jz[¢(2)]") for every variable name z that does not
appear in ¢. We will thus need two additional maneuvers, that handle not only replacing a
variable name in a single formula (i.e., that ‘Qz[¢(x)]’ is equivalent to ‘Qz[p(2)]’), but also
quantifying (with and without replacing variable names) over equivalent formulas. Specif-
ically, let and y be variable names, and let ¢([0) and () be arbitrary parametrized
formulas that have neither x nor y as free variable names. Then we will need the following:

15. If ¢(x) and ¥ (z) are equivalent, then ‘Vz[p(x)]” and ‘Vy[(y)]” are equivalent.

16. If ¢(x) and ¥ (z) are equivalent, then ‘Jz[p(x)]” and ‘Jy[v(y)]” are equivalent.

In this section, you will prove the Prenex Normal Form Theorem. Our main strategy
will be, as outlined above, to first make sure that no two variable names “clash,” and then
“pull out” all quantifications using the above equivalences. Let us consider an example:
say that we wish to convert the following formula into prenex normal form:

‘~(z=x|Vz[(3x[(x=2&Vz[z=X])| = Vx[x=Y])])’

Let us carefully try and make sense of all of the occurrences of the same variables names
(variable name occurrences left in black are free):

‘~(z=x|Vz|(3x[(x=2&Vz|z=x])| > Vx[x=Yy])]|)’
We first replace each quantified variable name with a new unique variable name:
‘~(z=x|Vz1[(F22[(22=21&V23[23=22|)| = Vz4[z4=y])]|)’
We now start by pulling out the quantification ‘Vz3’ from the conjunction:

‘~(z=x|Vz1[(322[(22=21& 23 |23=22|)| = Vz4[zd=y])])’

I
‘~(z=x|Vz1[(F22[V23|(22=21&23=22)|| =Vz4[z4=y])])’

We now pull out both of the quantifications ‘3z2" and ‘Vz3’ from the implication (note
that the universal quantification becomes an existential quantification and vise versa, due
to the rules of pulling out quantifications from the left side of an implication):

‘~(z2=x|Vz1[(322[V23[(22=21&2z3=22) || = Vz4[zd=y])])’

4
‘~(z=x|Vz1[V2z2[323[((z2=21&2z3=22) —Vz4[z4=y])|]])’

We now pull out the quantification ‘Vz4’ from the implication (note that this remains a
universal quantification due to the rules of pulling out quantifications from the right side
of an implication):

‘~(z=x|Vz1[Vz2[3z3[((z2:11&z3:z2) —Vzd[zd=y])]]])’
‘~(z=x|Vz1|V2z2[323[V24|((22=21&2z3=22) —z4=y)]]]])’

We now pull out all of the quantifications from the disjunction:

Chapter 11 209 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

~(z=x|V21Vz2[323[VzA4[((22=21&23=22) —zd=y)]]]])’

4
V21 |V22[323|Vzd|(z=x|((z2=21&2z3=22) —z4=y))||||’

Finally, we pull out all of the quantifications from the negation, noting that each universal
quantifier is replaced with an existential quantifier and vise versa:

V71 |V22[323|V2d|(z=x|((z2=21&2z3=22) —z4=y))]|||’

U
‘I21[322[V23[324 [~ (z=x|((22=21&2z3=22) —z4=y))]|||’

That’s it: we have reached an equivalent formula that is in prenex normal form. In the
remainder of this section, you will write code that not only performs the above conversion
for any formula, but also produces a proof of the equivalence of the original formula and
the resulting formula, thus proving the Prenex Normal Form Theorem.

To make things easier, we will allow the proofs that you will program in the remainder of
this section to use all of the sixteen above-stated equivalences and implications as additional
axiom schemas, even though each of these is provable from our four basic axiom schemas
of quantification. All of these additional axiom schemas are already defined for you in the
file predicates/prenex.py.

// [predicates/prenex.pyj \\

#: Additional axioms of quantification for Predicate Logic.
ADDITIONAL_QUANTIFICATION_AXIOMS = (
Schema (Formula.parse (' (("Ax[R(x)]->Ex["R(x)1)&(Ex["R(x)]->"Ax[R(x)])) "),
{'x', 'R'D),
Schema (Formula.parse(' (("Ex[R(x)]->Ax["R(x)]1)&(Ax["R(x)]->"Ex[R(x)])) '),
'x', 'R'}),
Schema (Formula.parse(' (((Ax[R(x)1&Q))—>Ax[(R(x)&Q())1)&'
"(Ax[(R(x)&QO))1->(Ax[R(x)1&Q0O))) "), {'x', 'R', 'Q'D),
Schema (Formula.parse (' (((Ex[R(x)]1&QO))—>Ex[(R(x)&Q))1)&"
"(Ex[(Rx)&QO)I1->Ex[R(x)I1&Q O "D, {'x', 'R', 'QA'D,
Schema (Formula.parse (' (((QO)&Ax[R(x)]1)->Ax[(QO&R(x))1)&'
"(Ax[(QO&Rx))I->(QO&Ax[R(x)]))) "), {'x', 'R', 'Q'D),
Schema (Formula.parse (' (((QO&Ex[R(x)])—>Ex[(QO)&R(x))1)&"
"(Ex[(QO&Rx))I->(QO&Ex[R(x)1))) "), {'x', 'R', 'QA'D,
Schema (Formula.parse(' (((Ax[R(x)]11QO))->Ax[(R(x) IQO)1)&'
"(Ax[R(x) 1QO)]1->(Ax[R(x)11Q0OID "), {'x', 'R', 'Q'}),
Schema (Formula.parse(' (((Ex[R(x)]11QO))->Ex[(R(x)|QO)1)&'
"(Ex[(RG)1QOII->Ex[R(x)I1QOI), {'x', 'R', 'Q'D),
Schema (Formula.parse (' (((QQO) [Ax[R(x)]1)->Ax[(QO) IR(x))1)&'
"(Ax[(QO IR(x))]1->QO [Ax[R(x)1))) "), {'x', 'R', 'Q'D,
Schema (Formula.parse(' (((QQO) |Ex[R(x)]1)->Ex[(QQO) IR(x))1)&'
"(Ex[(QO IR(x))1->QO [Ex[R(x)1))) "), {'x', 'R', 'Q'D),
Schema (Formula.parse (' (((Ax[R(x)]1->Q0))->Ex[(R(x)->Q0))1)&"
"Ex[RE)->Q0)]->Ax[Rx)I->Q0)))), {'x', 'R', 'QA'D),
Schema (Formula.parse (' (((Ex[R(x)]->Q0))->Ax[(R(x)->Q0))1)&"
"(Ax[(R(x)->QO)]1->Ex[R(x)I->Q0))) "), {'x', 'R', 'QA'}),
Schema (Formula.parse(' (((Q()->Ax[R(x)])-—>Ax[(QO->R(x))1)&'
"(Ax[QO->R(x))]1->@QO—>Ax[R(x)1))) "), {'x', 'R', 'Q'D),
Schema (Formula.parse (' (((Q(O)->Ex[R(x)])->Ex[(QO)->R(x))])&'
"(Ex[(QO->Rx))I->(QO->Ex[R(x)1)))"), {'x', 'R', 'QA'D),
Schema (Formula.parse (' (((R(x)->Q(x))&(Q(x)->R(x)))->'
"((Ax[R(x)]1—>Ay QA D &(Ay [Q(y) 1 ->Ax[R(x)1))) "),
{'x', 'y's, 'R', 'Q'}D),
Schema (Formula.parse (' (((R(x)->Q(x))&(Q(x)->R(x)))->"

Chapter 11 210 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

"((Ex[R(x)]->Ey [Q(y) D& Ey[Q(y)1->Ex[R(x)1))) '),
{IXI, vyu, 'R', qu}))

Notice that in the example above, we have in fact used these equivalences to replace a
subformula with an equivalent subformula. While the schemas above do not allow us to
do precisely that (they formally handle full rather than partial formulas), as we will see
the additional ability of Additional Axioms 15 and 16 to quantify over equivalent formulas
will allow us to proceed in essentially the same way nonetheless.

As we will handle a lot of equivalence-between-formulas proofs below, it will be conve-
nient to use the following function, which we have already implemented for you and which
takes two formulas and returns the formula that asserts their equivalence.

(; B
Ve kpredlcates/prenex.py) ~

def equivalence_of (formulal: Formula, formula2: Formula) -> Formula:
"""States the equivalence of the two given formulas as a formula.

Parameters:
formulal: first of the formulas the equivalence of which is to be
stated.
formula2: second of the formulas the equivalence of which is to be
stated.
Returns:

The formula '((formulal -> formula2)& (formula2 -> formulal~))'.

return Formula('&', Formula('->', formulal, formula2),
Formula('->', formula2, formulal))
_ J

Before we start proving the Prenex Normal Form Theorem using the above schemas,
however, we invite you to prove (all instances of) the first of these schemas, Additional
Axiom 1, yourself from the four basic axiom schemas of quantification (and to save yourself
the work of proving the remaining fifteen schemas). Your proof will also demonstrate the
incredible usefulness of the Deduction Theorem from the previous section.

Optional Task 4. In this task, you will prove, for every variable name x and for every
arbitrary formula ¢(z), that ‘~Vz[¢(x)]’ is equivalent to ‘Jz[~¢(z)]. In the first two parts
below you will show both directions of the equivalence, and in the third you will tautolog-
ically infer the equivalence. The functions that you are asked to implement in this task
are contained in the file predicates/some_proofs.py.

a. Prove, for every variable name z and for every arbitrary formula ¢(z), that
‘(~Jz[~¢p(x)]=Vx[p(x)]) holds. That is, implement the missing code for the func-
tion _prove not_exists_not_implies_all(variable, formula), which takes x
and ¢(z), and returns a proof of ‘(~Jz[~p(x)]—=Vr[p(z)]).b

(i 2
/ kpredlcates/some_proofs.py) \

def _prove_not_exists_not_implies_all(variable: str, formula: Formula,
print_as_proof_forms: bool = False) -> \
Proof:
"""Proves that '("E variable [formula]->A variable [*formula’])'.

Parameters:

50nce again, here and below, we allow the usage of all six basic logical axiom schemas so that you may
easily use the Prover class in your solution.

Chapter 11 211 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

variable: variable name for the quantifications in the formula to be
proven.

formula: statement to be universally quantified, and whose negation is
to be existentially quantified, in the formula to be proven.

print_as_proof_forms: flag specifying whether the proof is to be printed
in real time as it is being created.

Returns:
A valid proof of the above formula via “Prover.AXIOMS".
nnn
assert is_variable(variable)
Optional Task 11.4a

- /

Guidelines: Use the Deduction Theorem, that is, assume ‘~3z[~¢(x)]" and prove
Vx[p(x)]. As your first step, use ‘~¢(x)—3Ix[~p(x)].

b. Prove, for every variable name x and for every arbitrary formula ¢(z), that
‘(Fz[~¢(x)|—=~Vz[p(z)])’ holds. That is, implement the missing code for the func-
tion _prove_exists _not_implies not_all(variable, formula), which takes x
and ¢(z), and returns a proof of ‘(Jz[~¢(x)|—=~Vz[p(x)]).

(predi)
/ Kpredlcates/some_proofs.pyJ \

def _prove_exists_not_implies_not_all(variable: str, formula: Formula,
print_as_proof_forms: bool = False) -> \
Proof:
"""Proves that '(E variable [formula]->"Avariable [formula])'.

Parameters:
variable: variable name for the quantifications in the formula to be
proven.
formula: statement to be universally quantified, and whose negation is
to be existentially quantified, in the formula to be proven.
print_as_proof_forms: flag specifying whether the proof is to be printed
in real time as it is being created.

Returns:
A valid proof of the above formula via “Prover.AXIOMS".
nnn
assert is_variable(variable)
Optional Task 11.4b

- /

Guidelines: Use the Deduction Theorem, that is, assume ‘Jz[~¢(x)]" and prove
‘“Vz[p(x)]. Your last step should be calling add_existential_derivation()
with the consequent argument to this method being ‘~Vz[¢(x)]” and with the
line numberl argument to this method pointing to a line with the assumption

Hzl~o(x)]

c. Prove, for every variable name x and for every arbitrary formula ¢(x), that
‘“Vz[op(z)] is equivalent to ‘Jz[~¢(z)]. That is, implement the missing code for
the function prove_not_all iff exists_not(variable, formula), which takes x
and ¢(x), and returns a proof of this equivalence.

Chapter 11 212 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

(; B
Ve Kpredlcates/some_proofs.pyJ ™~

def prove_not_all_iff_ exists_not(variable: str, formula: Formula,
print_as_proof_forms: bool = False) -> Proof:
"""Proves that

“equivalence_of (' (A variable” [“formula™]', 'E variable [T formula’]')™.
Parameters:
variable: variable name for the quantifications in the formula to be
proven.

formula: statement to be universally quantified, and whose negation is
to be existentially quantified, in the formula to be proven.

print_as_proof_forms: flag specifying whether the proof is to be printed
in real time as it is being created.

Returns:
A valid proof of the above formula via “Prover.AXIOMS".
nnn
assert is_variable(variable)
Optional Task 11.4c

= /

Guidelines: Tautologically infer this from the previous two parts. Use the method
add_proof () of class Prover to insert these two proofs into a new prover (the
add_proof () method takes care of properly shifting all line numbers that justify
MP and UG lines, to retain the validity of proof lines that are added when the
prover already has some proof lines), and continue the proof from there using the
Prover API.

Examining the proof of equivalence that Optional Task 4 outputs, you will note
that it uses all four basic logical axioms of quantifications (UI, EI, US, and ES).
We note that your solution to Optional Task 4 indeed completely proves (all in-
stances of) the first of the sixteen schemas above. Therefore, in any proof that has
this schema as an assumption/axiom (recall that in Python, this schema is referenced
as ADDITIONAL_QUANTIFICATION_AXIOMS[O]), any step that instantiates this assump-
tion/axiom, i.e., any proof step of the following form:

stepN = prover.add_instantiated_assumption(
instance, ADDITIONAL_QUANTIFICATION_AXIOMS[O],
{'R': formula, 'x': variable})

can be replaced with the following equivalent proof step, which does not require
ADDITIONAL_QUANTIFICATION_AXIOMS[0] as an assumption/axiom:

stepN = prover.add_proof (
not_all iff exists_not_proof (
variable, formula.substitute({'_': Term(variable)})))

Now that we have had a small taste of what proving the above sixteen schemas entails,
we will very happily move on to proving the Prenex Normal Form Theorem, using all
sixteen schemas as additional assumptions/axioms. (The fact that all of these sixteen
schemas are provable from our four basic axiom schemas of quantification implies, by the
Soundness Theorem for Predicate Logic, that they are all sound. Since you have not seen
a proof of Additional Axioms 2 through 16, we invite you to try and prove their soundness
directly to be convinced that they are all indeed sound.) We start by making sure that
the quantified variable names in different parts of a given formula do not “clash” with one
another, nor with the free variable names of the formula.

Chapter 11 213 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Definition (Uniquely Named Variables). A formula is said to have uniquely named
variables if no two quantifications in the formula quantify over the same variable name,
and no variable name has both bound and free occurrences in the formula.

The function has_uniquely_named_variables(formula), which we have already im-
plemented for you, checks whether a given formula has uniquely named variables.

(: A
Ve kpredlcates/prenex.pyj ~

def has_uniquely_named_variables(formula: Formula) -> bool:
"""Checks if the given formula has uniquely named variables.

Parameters:
formula: formula to check.

Returns:
““False™~ if in the given formula some variable name has both bound and
free occurrences or is quantified by more than one quantifier, "~ True "
otherwise.

Examples:

>>> has_uniquely_named_variables(
Formula.parse (' (x=0& (Ax[R(x)] |Ex[R(x)]1))'))
False
>>> has_uniquely_named_variables(
Formula.parse (' (x=0& (Ax[R(x)] |Ey[R(y)]1)) ')
False
>>> has_uniquely_named_variables(
Formula.parse (' (y=0& (Ax[R(x)] |Ex[R(x)]1))'))
False
>>> has_uniquely_named_variables(
Formula.parse (' (x=0&(Ay[R(y)]1|Ez[R(2)])) "))
True
forbidden_variables = set(formula.free_variables())
def has_uniquely_named_variables_helper(formula: Formula) -> bool:
if is_unary(formula.root):
return has_uniquely_named_variables_helper(formula.first)
elif is_binary(formula.root):
return has_uniquely_named_variables_helper(formula.first) and \
has_uniquely_named_variables_helper(formula.second)
elif is_quantifier(formula.root):
if formula.variable in forbidden_variables:
return False
forbidden_variables.add(formula.variable)
return has_uniquely_named_variables_helper (formula.statement)
else:
assert is_equality(formula.root) or is_relation(formula.root)
return True

S return has_uniquely_named_variables_helper (formula)

/

Task 5. Implement the missing code for the function
_uniquely_rename_quantified_variables(formula), which takes a formula and
returns an equivalent formula with uniquely named variables, along with a proof of the
equivalence of the given and returned formulas.

Chapter 11 214 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

(; B
Ve Kpredlcates/prenex.py) ~

def _uniquely_rename_quantified_variables(formula: Formula) -> \
Tuple[Formula, Proof]:
"""Converts the given formula to an equivalent formula with uniquely named
variables, and proves the equivalence of these two formulas.

Parameters:
formula: formula to convert, which contains no variable names starting
with ~"z°°

Returns:
A pair. The first element of the pair is a formula equivalent to the
given formula, with the exact same structure but with the additional
property of having uniquely named variables, obtained by consistently
replacing each variable name that is bound in the given formula with a
new variable name obtained by calling
“next (fresh_variable_name_generator) . The second element of the pair is
a proof of the equivalence of the given formula and the returned
formula (i.e., a proof of “equivalence_of (formula, returned_formula))
via “Prover.AXIOMS® and ~ADDITIONAL_QUANTIFICATION_AXIOMS®.

Examples:
>>> formula = Formula.parse('” (w=x|Aw[(Ex[(x=w&Aw[w=x])]->Ax[x=y])]1)")
>>> returned_formula, proof = _uniquely_rename_quantified_variables(

formula)
>>> returned_formula
~ (w=x|Az58 [(Ez17 [(z17=258%Az4 [24=217])]1->Az32[z32=y])])
>>> proof.is_valid()

True

>>> proof.conclusion == equivalence_of (formula, returned_formula)

True

>>> proof.assumptions == Prover.AXIOMS.union(
ADDITIONAL_QUANTIFICATION_AXIOMS)

True

for variable in formula.variables():
assert variable[0] !'= 'z'
Task 11.
\\ as 5 J/

Guidelines: Use recursion. To modify, combine, and extend the proofs returned by
recursive calls, construct a new Prover object, use the add_proof () method of that object
with each proof returned by a recursive call to insert it into the proof of this prover (the
add_proof () method takes care of properly shifting all line numbers that justify MP and
UG lines, to retain the validity of proof lines that are added when the prover already
has some proof lines), and then complete the proof using the Prover API, including the
methods that you implemented in Chapter 10 (in particular, with the last two additional
axioms listed above—Additional Axioms 15 and 16).

Recall that Additional Axioms 1 and 2 listed above allow you to “pull out” a single
quantification across a negation. The next building block toward proving the Prenex Nor-
mal Form Theorem is to show how to use that (in conjunction with Additional Axioms 15
and 16) to “pull out” any number of quantifications across a negation.

Task 6. Implement the missing code for the function
_pull out_quantifications_across_negation(formula), which takes a formula
whose root is a negation, i.e., a formula of the form ‘~Qx1[Q2xs[- - Qna,[d]---]]’ where

Chapter 11 215 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

n > 0, each @); is a quantifier, each x; is a variable name, and ¢ does not start with a
quantifier, and returns an equivalent formula of the form ‘Q)x1[Qxzs] - QL xn[~@] -]
where each Q) is a quantifier (and where each z; and ¢ are the same as in formula), along
with a proof of the equivalence of the given and returned formulas.

/ [predicates/prenex.py] \

def _pull_out_quantifications_across_negation(formula: Formula) -> \
Tuple[Formula, Proof]:
"""Converts the given formula with uniquely named variables of the form
'""Q1°x1°[CQ2°°x2°[...°Qn" "xn” [T inner_formula’]...]]' to an equivalent
formula of the form
""Q'1x1°[CQ'27°x2°[..."Q'n" "xn” [T inner_formula“]...]]', and proves the
equivalence of these two formulas.

Parameters:
formula: formula to convert, whose root is a negation, i.e., which is of
the form '""Q1 "x1°[TQ2 "x2 [... Qn” "xn” [inner_formula~]...]]"'
where "n >=0, each Qi is a quantifier, each “xi” is a variable
name, and "“inner_formula® does not start with a quantifier.

Returns:
A pair. The first element of the pair is a formula equivalent to the
given formula, but of the form
'""Q'1°°x1°[CQ'2°°x2°[..."Q'n" "xn” [T inner_formula“]...]]' where each
"Q'i’ is a quantifier, and where the “xi”~ variable names and
“inner_formula® are the same as in the given formula. The second element
of the pair is a proof of the equivalence of the given formula and the
returned formula (i.e., a proof of
“equivalence_of (formula, returned_formula)’) via “Prover.AXIOMS™ and
“ADDITIONAL_QUANTIFICATION_AXIOMS® .

Examples:
>>> formula = Formula.parse (' Ax[Ey[R(x,y)]1]1"')
>>> returned_formula, proof = _pull_out_quantifications_across_negation(

formula)
>>> returned_formula
Ex[Ay["R(x,y)]]
>>> proof.is_valid()

True

>>> proof.conclusion == equivalence_of (formula, returned_formula)

True

>>> proof.assumptions == Prover.AXIOMS.union(
ADDITIONAL_QUANTIFICATION_AXIOMS)

True

assert is_unary(formula.root)

_ # Task 11.6 Y
Guidelines: Call the function recursively with ‘~Qaoxs[- Qnx,[d] -] to obtain
‘Qhyxs[- QL xy[~d]- -] (and the proof of equivalence). From this show that
Q111 [~Qaxa[- Quan[d] - -] and ‘Qx1[Q52] - - Q1 [~¢]- - -] are equivalent (don’t for-

get that add_proof () is your friend); now apply Additional Axiom 1 or Additional Ax-
iom 2. As a base case for the recursion, use the case n = 0 (no quantifications after the
negation at the root of formula) rather than the case n = 1.

Our next building block, which you will develop throughout Tasks 7 and 8, is to “pull
out” any number of quantifications from both operands of a binary operator. We start

Chapter 11 216 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

with “pulling out” any number of quantifications from one of the operands of a binary
operator.

Task 7.

a. Implement the missing code for the function
_pull out_quantifications_from left_across_binary_operator(formula),
which takes a formula with uniquely named variables whose root is a binary
operator, i.e., a formula with uniquely named variables that is of the form
(Q1x1[Q2ma] - - Quy[d]- - -]]*1)" where x is a binary operator, n > 0, each Q; is a
quantifier, each z; is a variable name, and ¢ does not start with a quantifier, and
returns an equivalent formula of the form ‘Q)z1[Qhxs[- - QL zn[(d%)]- - -] where
each @) is a quantifier (and where %, each z;, ¢, and v are the same as in formula),
along with a proof of the equivalence of the given and returned formulas.

/ [predicates/prenex.py] \

def _pull out_quantifications_from_left_across_binary_operator (formula:
Formula) -> \
Tuple[Formula, Proof]:

"""Converts the given formula with uniquely named variables of the form

'CQR1ITx1° Q2 " x2° [...°Qn" “xn” [Tinner_first]...]] * “second™)' to an

equivalent formula of the form

""QR'1Tx1°[CQ'2° %27 [...°Q'n” “xn” [Cinner_first “* “second™)]...]]' and

proves the equivalence of these two formulas.

Parameters:
formula: formula with uniquely named variables to convert, whose root
is a binary operator, i.e., which is of the form
'CQ1x1° Q27 "x2° [...7Qn" "xn” [Cinner_first]...]] * “second’)'
where “*° is a binary operator, "n >=0, each Qi is a quantifier,
each “xi” is a variable name, and “inner_first™ does not start with
a quantifier.

Returns:
A pair. The first element of the pair is a formula equivalent to the
given formula, but of the form
""Q'17x1°[CQ'2°°x2°[...°Q'n" "xn~ [Cinner_first “* “second)]...1]"'
where each "Q'i” is a quantifier, and where the operator “*°, the “xi°
variable names, “inner_first®, and “second’ are the same as in the given
formula. The second element of the pair is a proof of the equivalence of
the given formula and the returned formula (i.e., a proof of
“equivalence_of (formula, returned_formula)) via ~Prover.AXIOMS™ and
“ADDITIONAL_QUANTIFICATION_AXIOMS".

Examples:
>>> formula = Formula.parse(' (Ax[Ey[R(x,y)]11&Ez[P(1,2z)]1)")
>>> returned_formula, proof = \
_pull_out_quantifications_from_left_across_binary_operator (
.. formula)
>>> returned_formula
Ax[Ey[(R(x,y)&Ez[P(1,2)1)]]
>>> proof.is_valid()

True

>>> proof.conclusion == equivalence_of (formula, returned_formula)
True

>>> proof.assumptions == Prover.AXIOMS.union(

ADDITIONAL_QUANTIFICATION_AXIOMS)

Chapter 11 217 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

True
nnn
assert has_uniquely_named_variables(formula)
assert is_binary(formula.root)
Task 11.7a

Guidelines: The logic is almost identical to that of Task 6: call the function re-
cursively with ‘(Qozs[- - - Qnzy[0]- - - [x1¥)’ to obtain ‘Qhxs[- Q) x,[(d*1)]-- -] (and
the proof of equivalence). From this show that ‘Q}z1[(Qaxs[- - Qnr,[@]- - - |¥1)] and
‘Qx1[Qhxa] - - Qhxn[(dx)]- -+]] are equivalent (don’t forget that add_proof () is
your friend); now apply one of the additional quantification axioms. As a base case
for the recursion, use the case n = 0 rather than the case n = 1.

Hint: @) depends not only on);, but also on the operator .

b. Implement the missing code for the function
_pull out_quantifications_from right_across_binary_operator (formula),
which takes a formula with uniquely named variables whose root is a binary
operator, i.e., a formula with uniquely named variables that is of the form
(PpxQ121[Qaxa] - - Qnrn[th]- - -]])” where * is a binary operator, n > 0, each Q; is a
quantifier, each z; is a variable name, and 1 does not start with a quantifier, and
returns an equivalent formula of the form ‘Qz1[Q5xs[- - Q) x,[(d*1))]- - -] where
each @) is a quantifier (and where *, each z;, ¢, and ¢ are the same as in formula),
along with a proof of the equivalence of the given and returned formulas.

(; B
Ve kpredlcates/prenex.py) ~

def _pull_out_quantifications_from_right_across_binary_operator(formula:
Formula) -> \
Tuple [Formula, Proof]:

"""Converts the given formula with uniquely named variables of the form
'Cfirst™ " "Q1 "x1°[TQ2°"x2 [... Qn "xn” [inner_second™]...]])' to an
equivalent formula of the form

UR'1TTx1T[CQR'2 %27 [...°Q'n" "xn” [C first” T*” “inner_second™)]...]]' and
proves the equivalence of these two formulas.

Parameters:
formula: formula with uniquely named variables to convert, whose root
is a binary operator, i.e., which is of the form
'Cfirst™ * Q1 "x1°[CQ2 "x2 [... Qn” "xn” [inner_second]...]1]1)'
where “*° is a binary operator, "n >=0, each "Qi~ is a quantifier,
each “xi” is a variable name, and " inner_second ™ does not start with
a quantifier.

Returns:
A pair. The first element of the pair is a formula equivalent to the
given formula, but of the form
""Q'17x1°[CQ'27°x2°[...°Q'n" "xn~ [Cfirst” “* “inner_second’)]...]1]"'
where each "Q'i” is a quantifier, and where the operator “*°, the “xi°
variable names, “first®, and “inner_second® are the same as in the given
formula. The second element of the pair is a proof of the equivalence of
the given formula and the returned formula (i.e., a proof of
“equivalence_of (formula, returned_formula)’) via “Prover.AXIOMS™ and
“ADDITIONAL_QUANTIFICATION_AXIOMS®.

Examples:
>>> formula = Formula.parse('(Ax[Ey[R(x,y)]1]1|Ez[P(1,2z)])")

Chapter 11 218 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

>>> returned_formula, proof = \
_pull_out_quantifications_from_right_across_binary_operator(

.. formula)

>>> returned_formula

Ez[(Ax[Ey[R(x,y)]1]IP(1,2))]

>>> proof.is_valid()

True

>>> proof.conclusion == equivalence_of(formula, returned_formula)

True

>>> proof.assumptions == Prover.AXIOMS.union(
ADDITIONAL_QUANTIFICATION_AXIOMS)

True

assert has_uniquely_named_variables(formula)
assert is_binary(formula.root)
_ # Task 11.7b)

Guidelines: Almost identical to the first part: call the function recur-
sively with ‘(¢p*xQazs- - - Qnxp[t)]- -+ 1)’ to obtain ‘Q4xs[- - QL x,[(dx))]- - -]’ (and the
proof of equivalence). From this show that ‘Q|x1[(¢*Qoxa[- Qunr,[¥h]---])]” and
‘QLx1[Qhxa] - - Qh xy[(dx)]- -+]]” are equivalent (don’t forget that add_proof () is
your friend); now apply one of the additional quantification axioms. As a base case
for the recursion, use the case n = 0 rather than the case n = 1.

You are now ready to complete the building block that “pulls out” all quantifications
from both operands of a binary operator—this turns out to be slightly trickier than simply
applying both parts of Task 7.

Task 8. Implement the missing code for the function
_pull out_quantifications_across_binary_operator(formula), which takes a
formula with uniquely named variables whose root is a binary operator, i.e., a formula
with uniquely named variables that is of the form

(Quz1[Qama[- Quwn[d]- - - [Jx Pryr [Paya[- - - Py (0] -+]])

where * is a binary operator, n > 0, m > 0, each @); and each P; is a quantifier, each z;
and each y; is a variable name, and neither ¢ nor 1 starts with a quantifier, and returns
an equivalent formula of the form

Qurr[Qyal - QU [Pl [Pl Pyl (9w))-++]])

where each @} and each P! is a quantifier (and where *, each x;, each y;, ¢, and ¢ are
the same as in formula), along with a proof of the equivalence of the given and returned

formulas.

(i B
Ve kpredlcates/prenex.pyj ~

def _pull_out_quantifications_across_binary_operator(formula: Formula) -> \
Tuple[Formula, Proof]:
"""Converts the given formula with uniquely named variables of the form
'CQ1x1° Q27 "x2° [...°Qn" "xn” [Tinner_first™]...]]1 %"
“P1y1 [CP2 "y2 [... Pm” “ym” ["inner_second’]...]]1)"'
to an equivalent formula of the form
TR x1t[Q'2 x2°[...°Q'n "xn" [
“P'1vty1t [CP'27y2 [L..P'm” “ym” [(Cinner _first® T*” “inner_second’)]...]]
1...11!

and proves the equivalence of these two formulas.

Chapter 11 219 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Parameters:

formula: formula with uniquely named variables to convert, whose root
is a binary operator, i.e., which is of the form
'CQ1ITTx1°[CQ2 " x27 [...7Qn" “xn” [Tinner_first]...]] %"

“P1y1 [CP2 "y2 [... Pm” “ym” ["inner_second’]...]]1)'

where “*° is a binary operator, "n >=0, "m >=0, each "Qi* and “Pi~
is a quantifier, each "xi” and “yi~ is a variable name, and neither
“inner_first® nor "inner_second’ starts with a quantifier.

Returns:

A pair. The first element of the pair is a formula equivalent to the
given formula, but of the form
Q' x1[CQ'2 0 x2°[...°Q'n "xn" [

P'1y1t[CP'27y2 [L..P'mT TymT [

(" inner_first™ " * ~inner_second’)

1...11]
1...11
where each "Q'i® and "P'i” is a quantifier, and where the operator “*7,
the "xi® and “yi® variable names, “inner_first®, and “inner_second’ are
the same as in the given formula. The second element of the pair is a
proof of the equivalence of the given formula and the returned formula
(i.e., a proof of “equivalence_of (formula, returned_formula)) via
“Prover.AXIOMS®™ and “ADDITIONAL_QUANTIFICATION_AXIOMS®.

Examples:
>>> formula = Formula.parse(' (Ax[Ey[R(x,y)]]->Ez[P(1,2)]1)")
>>> returned_formula, proof = \

_pull_out_quantifications_across_binary_operator (

- formula)
>>> returned_formula
Ex[Ay[Ez[(R(x,y)->P(1,2))]1]1]
>>> proof.is_valid()

True

>>> proof.conclusion == equivalence_of (formula, returned_formula)

True

>>> proof.assumptions == Prover.AXIOMS.union(
ADDITIONAL_QUANTIFICATION_AXIOMS)

True

assert has_uniquely_named_variables(formula)
assert is_binary(formula.root)

_ # Task 11.8 Y,
Guidelines: First use the first part of Task 7 on formula to obtain
Q11 [Qoxa - Quan[(¢x Pryi [Poyal - Pnym[V]---]])]- -] (and the proof of equiva-
lence). Then use the second part on ‘(¢xPiyi[Poyal - Pnym[t]---]])” to ob-
tain ‘P{y1[Poya[- -+ PLym[(é*x)]-- -] (and the proof of equivalence). Use the lat-
ter to show that ‘Qix:i[Q4xs[- Q@ an[(dxPryi[Poyol- - Prym[t]- -]])]---]]" is equiva-
lent to Q21[Q5ws[- - Qun[Plyn[Powa[- - Prym[(9x¢)]- -]]---]]. (And don’t forget that

add_proof () is your friend.)

You are now ready to combine Tasks 6 and 8 to convert a formula with no “clashing”
variable names (as output by Task 5) into a formula in prenex normal form.

Task 9. Implement the missing code for the function
_to_prenex_normal form from uniquely named variables(formula), which takes
a formula with uniquely named variables and returns an equivalent formula in prenex
normal form, along with a proof of the equivalence of the given and returned formulas.

Chapter 11 2920 Draft; comments welcome

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

Ve [predicates/prenex.py] ~

def _to_prenex_normal_form_from_uniquely_named_variables(formula: Formula) -> \
Tuple[Formula, Proof]:
"""Converts the given formula with uniquely named variables to an equivalent
formula in prenex normal form, and proves the equivalence of these two
formulas.

Parameters:
formula: formula with uniquely named variables to convert.

Returns:
A pair. The first element of the pair is a formula equivalent to the
given formula, but in prenex normal form. The second element of the pair
is a proof of the equivalence of the given formula and the returned
formula (i.e., a proof of “equivalence_of (formula, returned_formula))
via “Prover.AXIOMS™ and “ADDITIONAL_QUANTIFICATION_AXIOMS".

Examples:
>>> formula = Formula.parse(' (" (Ax[Ey[R(x,y)]1]1->Ez[P(1,2)])IS(w))")
>>> returned_formula, proof = \
_to_prenex_normal_form_from_uniquely_named_variables(
- formula)
>>> returned_formula
Ax[Ey[Az[(" (R(x,y)->P(1,2)) |S(w))]1]]
>>> proof.is_valid()

True

>>> proof.conclusion == equivalence_of (formula, returned_formula)

True

>>> proof.assumptions == Prover.AXIOMS.union(
ADDITIONAL_QUANTIFICATION_AXIOMS)

True

assert has_uniquely_named_variables(formula)
_ # Task 11.9 Y,

Guidelines: In the cases in which the root of formula is an operator, use recursion to
convert each operand into prenex normal form (and to obtain the proof of equivalence);
complete the proof of each of these cases using Task 6 or Task 8. (Don’t forget that
add_proof () is your friend.)

Now that all of the recursions are behind you, you are finally ready to prove the Prenex
Normal Form Theorem.

Task 10 (Programmatic Proof of the Prenex Normal Form Theorem). Implement the miss-
ing code for the function to_prenex_normal form(formula), which takes a formula and
returns an equivalent formula in prenex normal form, along with a proof of the equivalence
of the given and returned formulas.

// [predicates/prenex.py] \\

def to_prenex_normal_form(formula: Formula) -> Tuple[Formula, Proof]:
"""Converts the given formula to an equivalent formula in prenex normal
form, and proves the equivalence of these two formulas.

Parameters:
formula: formula to convert, which contains no variable names starting

with ~"z™°

Returns:

Chapter 11 221 Draft; comments welcome

Mathematical Logic through Python

Yannai A. Gonczarowski and Noam Nisan

\

Examples:

True
>>> proof.conclusion == equivalence_of (formula, returned_formula)
True
>>> proof.assumptions == Prover.AXIOMS.union(
ADDITIONAL_QUANTIFICATION_AXIOMS)
True
nnn
for variable in formula.variables():
assert variable[0] !'= 'z'
Task 11.10)

A pair. The first element of the pair is a formula equivalent to the
given formula, but in prenex normal form. The second element of the pair
is a proof of the equivalence of the given formula and the returned
formula (i.e., a proof of “equivalence_of (formula, returned_formula))
via “Prover.AXIOMS™ and ~ADDITIONAL_QUANTIFICATION_AXIOMS®.

>>> formula = Formula.parse('” (w=x|Aw[(Ex[(x=w&Aw[w=x])]->Ax[x=y])]1)")
>>> returned_formula, proof = to_prenex_normal_form(formula)

>>> returned_formula

Ez58[Ez17 [Az4 [Ez32 [~ (w=x| ((217=258&24=217)->2z32=y))111]

>>> proof.is_valid()

Guidelines: Use Tasks 5 and 9 (and don’t forget that add_proof () is your friend).

Chapter 11 299 Draft; comments welcome

	1 The Deduction Theorem
	2 Prenex Normal Form

