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Chapter 12:

The Completeness Theorem

In this chapter, in which the analysis of this entire book culminates, we will take
the final steps toward proving the Completeness Theorem for Predicate Logic—the
main theorem of Predicate Logic, which states that a set of formulas is consistent if
and only if it has a model. Similarly to Propositional Logic, we call a set of formulas in
Predicate Logic consistent if a contradiction (i.e., the negation of a tautology, such as
‘(R(x)&~R(x))’) cannot be proven from it and from our six axiom schemas (equivalently,
from it and from these six schemas plus the sixteen additional schemas from Chapter 11).1
So, consistency is a syntactic concept, while having a model is a semantic one, and the
Completeness Theorem relates these two seemingly very different concepts. While we will
not be able to create a fully programmatic proof for the Completeness Theorem (we will
have to complete the very last step mathematically, as it involves infinite models), we will
be able to programmatically prove almost all of the required lemmas, and to describe the
general flow of the mathematical proof.

As in Propositional Logic, there is an “easy direction” to the Completeness Theorem
that follows from (or rather, is a restatement of) the Soundness Theorem for Predicate
Logic. Recall that the Soundness Theorem for Predicate Logic from Chapter 9 states
that if a set of formulas A can be used, alongside our (basic and additional) twenty-two
(sound) axiom schemas, to prove a formula φ, then φ holds in any model where all of A
hold. In particular, if A has a model, then φ must hold in that model, so φ cannot be a
contradiction, and so A is consistent. This chapter is therefore dedicated to proving the
“hard direction” of the Completeness Theorem: that every consistent set of formulas has
a model.

In this chapter, we will assume that we are in a setting without any function names
and without the equality symbol—as you have shown in Chapter 8, this does not make
Predicate Logic lose any expressive power. Furthermore, it will suffice to carry out the core
of our proof with formulas that are given in prenex normal form, since you have shown
in Chapter 11 that this does not lose any generality. Finally, it will also be convenient to
work with formulas that are actually sentences, i.e., have no free variable names. Again,
this is without loss of generality since as we have seen, we can go back and forth between
sentences and formulas by universally quantifying over any free variable name using UG on
the one hand, and by removing universal quantifications using UI (replacing any quantified
variable name “with itself”) on the other hand. So, we wish to show that every consistent

1Recall from Propositional Logic that we call a set inconsistent if the negation of an axiom is provable
from it via our axiomatic system. In Propositional Logic we defined this with respect to the axiom I0 (but
saw that defining this with respect to any other axiom would have been equivalent), and in Predicate Logic
we define this with respect to any tautology, since we allow all tautologies as axioms in our proof thanks
to your proof of the Tautology Theorem in Propositional Logic (and once again, defining this with respect
to any other axiom would have been an equivalent completely syntactic definition). This is completely
analogous to our reinterpretation of proofs by way of contradiction for Predicate Logic in Chapter 11 as
compared to Chapter 5.
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set of sentences in prenex normal form (that, as will always be the case in this chapter, are
without function names or equalities) has a model. All of the functions that you are asked
to implement in this chapter are contained in the file predicates/completeness.py.

Since we have “assumed away” function names, to construct a model of a given consis-
tent set of sentences we will need to figure out three things:

1. which universe to use for the model,

2. which interpretation to give for each constant name, i.e., how to map each constant
name to an element from the universe, and

3. which interpretation to give for each relation name, i.e., for every relation name R
and every tuple of elements from the universe (α1, . . . , αn) where n is the arity of R,
whether the tuple (α1, . . . , αn) is in the interpretation of R.

Since we have “assumed away” the equality symbol, we will handle the first two of these
questions (which universe to use, and which interpretation to give for each constant name)
in a very simple (yet quite ingenious) manner: our universe will be the set of the con-
stant names that we use, and the interpretation of each constant name (when viewed as
a constant name) will be the constant name itself (when viewed as an element of the
universe).2

To handle the third of these questions (regarding which interpretation to give for each
relation name), it would be quite convenient if for each relation name R, for every tuple of
constant names (c1, . . . , cn) where n is the arity of R, the given consistent set of sentences
already had in it either the primitive sentence ‘R(c1,. . . ,cn)’ or its negation ‘~R(c1,. . . ,cn)’
(the set of sentences cannot contain both since then it would not be consistent), since then
we could simply “read off” the interpretation of R from such sentences: if the set of
sentences had this primitive sentence (without any negation), then the tuple (c1, . . . , cn)
should be in the interpretation of R, while if the set of sentences had the negation of this
primitive sentence, then this tuple should not be in the interpretation of R. The basic
strategy of our proof of the (“hard direction” of the) Completeness Theorem will therefore
be to add enough sentences (and in particular, enough sentences that are either primitive
sentences or the negation of primitive sentences) to the given set of sentences—while leaving
it consistent—so that we will indeed be able to “read off” the interpretations of all relation
names from such primitive sentences, or from their negations, in the set. In particular, we
will consider ourselves to have added “enough” sentences to the given set if after having
added them, the set satisfies the following condition:

Definition (Closed Set of Sentences; Primitively Closed Set of Sentences; Universally
Closed Set of Sentences; Existentially Closed Set of Sentences). Let S be a (possibly
infinite) set of sentences in prenex normal form. We say that S is closed if all of the
following hold:

• S is primitively closed: for every relation name R that appears somewhere in S
and for every tuple of (not necessarily distinct) constant names (c1, . . . , cn) where n
is the arity of R and each ci appears somewhere in S, either the primitive sentence
‘R(c1,. . . ,cn)’ or its negation ‘~R(c1,. . . ,cn)’ (or both) is in S.

2Had we not assumed away the equality symbol, we would have had to be far more careful here and
take the elements of the universe to be equivalence classes of constant names, similarly to our construction
from Chapter 8. The approach that we have adopted therefore allows for that argument to be handled in
a separate proof (that we have already given in Chapter 8), instead of being intertwined into our proof of
the Completeness Theorem.
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• S is universally closed: for every universally quantified sentence ‘∀x[φ(x)]’ in S and
every constant name c that appears somewhere in S, the universal instantiation
‘φ(c)’ is also in S.3

• S is existentially closed: for every existentially quantified sentence ‘∃x[φ(x)]’ in S,
there exists a constant name c such that the existential witness4 ‘φ(c)’ is also in
S.

The function is_closed(sentences) takes a (finite) set of sentences in prenex normal
form and returns whether this set is closed. While we have already implemented this
function for you, it is missing a few core components, which you will implement in the
next task.

predicates/completeness.py

def is_closed(sentences: AbstractSet[Formula]) -> bool:
"""Checks whether the given set of prenex-normal-form sentences is closed.

Parameters:
sentences: set of prenex-normal-form sentences to check.

Returns:
``True`` if the given set of sentences is primitively, universally, and
existentially closed; ``False`` otherwise.

"""
for sentence in sentences:

assert is_in_prenex_normal_form(sentence) and \
len(sentence.free_variables()) == 0

return is_primitively_closed(sentences) and \
is_universally_closed(sentences) and \
is_existentially_closed(sentences)

The function get_constants(formulas), which takes a (finite) set of formulas and
returns the set of constant names that appear in these formulas, will be useful in imple-
menting the three missing core components of the function is_closed() in the next task.
We have already implemented this function for you using the method constants() of class
Formula that you have implemented in Chapter 7.

predicates/syntax.py

def get_constants(formulas: AbstractSet[Formula]) -> Set[str]:
"""Finds all constant names in the given formulas.

Parameters:
formulas: formulas to find all constant names in.

Returns:
A set of all constant names used in one or more of the given formulas.

"""
constants = set()
for formula in formulas:

3Here and below, similarly to the notation used in previous chapters, by φ(x) we mean any formula that
may have x as a free variable name (but may have no other free variable names, as otherwise ‘∀x[φ(x)]’
would not be a sentence), and by ‘φ(c)’ we mean the sentence obtained from φ(x) by replacing every free
occurrence of x with c.

4The sentence ‘φ(c)’ is called an existential witness to ‘∃x[φ(x)]’ since if the former holds in a model,
then it “witnesses” that there really exists an element of the universe (the interpretation of c) such that if
it is assigned to x then ‘φ(x)’ holds in that model.

Chapter 12 225 Draft; comments welcome



DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

constants.update(formula.constants())
return constants

Task 1. Implement the missing components of the function is_closed(), that is:

a. Implement the missing code for the function is_primitively_closed(sentences),
which returns whether the given (finite) set of sentences in prenex normal form is
primitively closed.

predicates/completeness.py

def is_primitively_closed(sentences: AbstractSet[Formula]) -> bool:
"""Checks whether the given set of prenex-normal-form sentences is
primitively closed.

Parameters:
sentences: set of prenex-normal-form sentences to check.

Returns:
``True`` if for every n-ary relation name from the given sentences, and
for every n (not necessarily distinct) constant names from the given
sentences, either the invocation of this relation name over these
constant names (in order), or the negation of this invocation (or both),
is one of the given sentences; ``False`` otherwise.

"""
for sentence in sentences:

assert is_in_prenex_normal_form(sentence) and \
len(sentence.free_variables()) == 0

# Task 12.1a

Hint: The relations() method of class Formula may be useful here, and so may the
product() method (with its repeat argument) from the standard Python itertools
module.

b. Implement the missing code for the function is_universally_closed(sentences),
which returns whether the given (finite) set of sentences in prenex normal form is
universally closed.

predicates/completeness.py

def is_universally_closed(sentences: AbstractSet[Formula]) -> bool:
"""Checks whether the given set of prenex-normal-form sentences is
universally closed.

Parameters:
sentences: set of prenex-normal-form sentences to check.

Returns:
``True`` if for every universally quantified sentence from the given set
of sentences, and for every constant name from these sentences, the
statement quantified by this sentence, with every free occurrence of the
universal quantification variable name replaced with this constant name,
is also in the given set; ``False`` otherwise.

"""
for sentence in sentences:

assert is_in_prenex_normal_form(sentence) and \
len(sentence.free_variables()) == 0

# Task 12.1b
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Hint: The substitute() method of class Formula may be useful here.

c. Implement the missing code for the function is_existentially_closed(
sentences), which returns whether the given (finite) set of sentences in prenex
normal form is existentially closed.

predicates/completeness.py

def is_existentially_closed(sentences: AbstractSet[Formula]) -> bool:
"""Checks whether the given set of prenex-normal-form sentences is
existentially closed.

Parameters:
sentences: set of prenex-normal-form sentences to check.

Returns:
``True`` if for every existentially quantified sentence from the given
set of sentences there exists a constant name such that the statement
quantified by this sentence, with every free occurrence of the
existential quantification variable name replaced with this constant
name, is also in the given set; ``False`` otherwise.

"""
for sentence in sentences:

assert is_in_prenex_normal_form(sentence) and \
len(sentence.free_variables()) == 0

# Task 12.1c

Hint: The substitute() method of class Formula may be useful here as well.

Our strategy for the remainder of this chapter will be as follows. In Section 1, we will
show that once we have a closed set of sentences S then either we will be able to create
a model of it that has the set of constant names that appear in S as the universe of the
model (by “reading off” the interpretations of all relation names from S, as outlined above),
or otherwise we will be able to explicitly prove a contradiction from S (showing S to be
inconsistent). In Section 2, we will show that any set of sentences S can have sentences
added to it in a way that makes it closed, yet leaves it consistent if it originally were
consistent. In Sections 3 and 4 we will state and discuss the Completeness Theorem and
alternate versions thereof, as well as other conclusions and consequences of this important
theorem.

1 Deriving a Model or a Contradiction
for a Closed Set

In this section, we will show that once we have a closed set of sentences S, then either we
will be able to create a model of it with the set of constant names that appear in S as its
universe, or, if we fail in creating such a model, then we will show how to explicitly prove
a contradiction from S (showing that it is in fact inconsistent). That is, in this section we
will prove the following lemma:

Lemma (Completeness for Closed Sets). Let S be a (possibly infinite) closed set of sen-
tences in prenex normal form. If S is consistent, then S has a model.
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We will start by attempting to construct a model of S with the set of constant names
that appear in S as its universe. Specifically, if the primitive sentence ‘R(c1,. . . ,cn)’ is con-
tained in S then any such model of S must have the tuple (c1, . . . , cn) in the interpretation
of R, and so we will add this tuple to this interpretation in the model that we are creating.
Conversely, if ‘~R(c1,. . . ,cn)’ is in S, then this tuple must not be in the interpretation of
R in any such model of S, so we will not add this tuple to this interpretation in the model
that we are creating. (If both of these sentences are in S, then S is inconsistent since the
contradiction ‘(R(c1,. . . ,cn)&~R(c1,. . . ,cn))’ is provable from it, and we are done.) Due to
the primitive closure condition, S is assured to contain one of these primitive sentences
for every relation name R and every tuple of constant names that each appear somewhere
in S, so the model that we are creating is uniquely determined, and is in fact the only
possible candidate (among those whose universe is the set of constant names that appear
somewhere in S) for being a model of S. If this model satisfies all of the sentences in S,
then we are done. Otherwise, some sentence in S is unsatisfied by the model, and we will
want to show that S is in fact inconsistent. Our first order of business is to show that due
to the universal and existential closure conditions, one can remove all of the quantifiers
from this unsatisfied sentence, to find a quantifier-free sentence that is unsatisfied by the
model.

Task 2. Implement the missing code for the function
find_unsatisfied_quantifier_free_sentence(sentences, model, unsatisfied),
which takes a universally and existentially closed (finite) “set” (see below) of sentences
in prenex normal form sentences, takes a model model whose universe is the set of
constant names that appear somewhere in sentences, and takes a sentence (which
possibly contains quantifiers) from sentences that model does not satisfy, and returns a
quantifier-free sentence from sentences that model does not satisfy. To verify that you
indeed use the universal and existential closure conditions in your solution (and not simply
iterate over sentences until you find a suitable sentence to return), the tests for this task
are implemented such that the “set” sentences that this function is given in fact may not
be iterated over. Instead, it may only be accessed using containment queries, i.e., using
the Python in operator as in: if sentence in sentences. (In Python terminology, the
parameter sentences is a Container but not an AbstractSet.)

predicates/completeness.py

def find_unsatisfied_quantifier_free_sentence(sentences: Container[Formula],
model: Model[str],
unsatisfied: Formula) -> Formula:

"""
Given a universally and existentially closed set of prenex-normal-form
sentences, given a model whose universe is the set of all constant names
from the given sentences, and given a sentence from the given set that the
given model does not satisfy, finds a quantifier-free sentence from the
given set that the given model does not satisfy.

Parameters:
sentences: universally and existentially closed set of

prenex-normal-form sentences, which is only to be accessed using
containment queries, i.e., using the ``in`` operator as in:

>>> if sentence in sentences:
... print('contained!')
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model: model for all element names from the given sentences, whose
universe is `get_constants(sentences)`.

unsatisfied: sentence (which possibly contains quantifiers) from the
given sentences that is not satisfied by the given model.

Returns:
A quantifier-free sentence from the given set of sentences that is not
satisfied by the given model.

"""
# We assume that every formula in sentences is in prenex normal form and has
# no free variable names, that sentences is universally and existentially
# closed, and that the set of constant names that appear somewhere in
# sentences is model.universe; but we cannot assert these since we cannot
# iterate over sentences.
for constant in model.universe:

assert is_constant(constant)
assert is_in_prenex_normal_form(unsatisfied)
assert len(unsatisfied.free_variables()) == 0
assert unsatisfied in sentences
assert not model.evaluate_formula(unsatisfied)
# Task 12.2

Hint: Use recursion to “peel off” one quantifier at a time (replacing the quantified variable
name with some constant name) while maintaining that the resulting sentence is in the
given set of sentences and is unsatisfied by the given model. Use the fact that the given
set of sentences is universally and existentially closed to guide your implementation and
ensure its correctness.

Your solution to Task 2 and the reasoning behind it essentially prove the following
lemma (in particular, the reasoning behind your code does not hinge in any way on the
finiteness of the set of sentences or constant names.5):

Lemma. Let S be a (possibly infinite) universally and existentially closed set of sentences
in prenex normal form. If S is not satisfied by some model M , then there exists a quantifier-
free sentence in S that is not satisfied by M .

So, returning to our proof outline from before Task 2, we now have a quantifier-free
sentence that is not satisfied by the model that we created using the primitive closure
condition of S. We will notice that this quantifier-free sentences is composed, using logical
operators, of only primitive sentences. Generally speaking, the formulas in our language
are of course composed of relation invocations and equalities, with operators and quan-
tifications applied to them to create compound formulas. However, having assumed away
equalities for the analysis of this chapter, we have that all formulas are composed, us-
ing operators and quantifications, solely of relation invocations; and specifically that all
quantifier-free sentences are composed, using only operators, of relation invocations ap-
plied solely to constant names (since we have assumed away function names, and since any
variable name would be free, making the quantifier-free “sentence” in fact not a sentence).
In other words, all quantifier-free sentences are composed, using only logical operators, of
what we called, exactly for this reason, primitive sentences.

5While you do iterate over the set of constant names in your solution, you do so only to find a constant
name that when substituted into a given sentence yields a sentence that does not hold in the model. The
existence of such a constant name is guaranteed by the closure conditions, and this would continue to hold
even if the set of constant names were infinite.
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To complete our proof we will prove below, as you will demonstrate in the next task,
that the quantifier-free sentence from S that is not satisfied by the model that we created
(using the primitive closure condition of S) must tautologically contradict the sentences
in S that correspond to the primitive sentences from which this quantifier-free sentence is
composed, and therefore S is inconsistent.
Task 3. Implement the missing code for the function model_or_inconsistency(
sentences), which either returns a model of the given closed (finite) set of sentences
in prenex normal form (if such a model exists), or returns a proof of a contradiction from
these sentences (as well as our axioms) as assumptions.

predicates/completeness.py

def get_primitives(quantifier_free: Formula) -> Set[Formula]:
"""Finds all primitive subformulas of the given quantifier-free formula.

Parameters:
quantifier_free: quantifier-free formula that contains no function names

and no equalities, whose subformulas are to be searched.

Returns:
The primitive subformulas (i.e., relation invocations) of which the
given quantifier-free formula is composed using logical operators.

Examples:
The primitive subformulas of '(R(c1,d)|˜(Q(c1)->˜R(c2,a)))' are
'R(c1,d)', 'Q(c1)', and 'R(c2,a)'.

"""
assert is_quantifier_free(quantifier_free)
assert len(quantifier_free.functions()) == 0
assert '=' not in str(quantifier_free)
# Task 12.3a

def model_or_inconsistency(sentences: AbstractSet[Formula]) -> \
Union[Model[str], Proof]:

"""Either finds a model in which the given closed set of prenex-normal-form
sentences holds, or proves a contradiction from these sentences.

Parameters:
sentences: closed set of prenex-normal-form sentences that contain no

function names and no equalities, to either find a model of, or
prove a contradiction from.

Returns:
A model in which all of the given sentences hold if such exists,
otherwise a valid proof of a contradiction from the given formulas via
`Prover.AXIOMS`.

"""
assert is_closed(sentences)
for sentence in sentences:

assert len(formula.functions()) == 0
assert '=' not in str(sentence)

# Task 12.3b

Guidelines: First construct the model with get_constants(sentences) as its universe
and with relation interpretations according to the primitive (and negation-of-primitive)
sentences in sentences (ignoring any sentence in sentences that is not a primitive sen-
tence or its negation while constructing this model). If this model satisfies sentences,
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then you are done. Otherwise, find some sentence from sentences that this model
does not satisfy, and use Task 2 to consequently find a quantifier-free sentence from
sentences that this model does not satisfy. Then, tautologically prove a contradiction
from 1) this quantifier-free sentence, 2) the primitive sentences in sentences that
appear in this quantifier-free sentence, and 3) the negation-of-primitive sentences in
sentences whose primitive negation appears in this quantifier-free sentence. For the last
part (proving a contradiction), first implement the missing code for the recursive function
get_primitives(quantifier_free) (see the function docstring for details), and then use
that function to complete your solution of this task.

Your solution to Task 3 demonstrates the lemma on Completeness for Closed Sets stated
in the beginning of this section. We do not consider your solution to programmatically
prove this lemma, though, as the implementation of your solution most probably does not
explain why a key step of this solution works. Specifically, the last key remaining step in
the proof of the lemma on Completeness for Closed Sets, that of deriving a contradiction
from the quantifier-free sentence that you found in Task 2, is not necessarily explained
by your implementation. If you followed our guidelines above, then your implementation
states that a contradiction is a tautological implication of this quantifier-free sentence, as
well as its primitive components—or their negations—that are in S. Otherwise, you may
have done something slightly different but essentially the same such as stating that the
negation of the conjunction of this quantifier-free sentence and its primitive components—
or their negations—that are in S, is a tautology, and as such simply listed that as a line in
the proof of the contradiction. Either way, we will now explicitly, mathematically, prove
that a contradiction can in fact be derived as needed:

Lemma. Let φ be a quantifier-free sentence, let p1, . . . , pn be its primitive subformulas, and
let S be a set of formulas that for every i = 1, . . . , n contains either the primitive sentence pi

or its negation ‘~pi’. Denote by S ′ the set of these primitive or negated-primitive sentences
that are in S. If φ evaluates to False in some model of S ′, then S ′ ∪ {φ} is inconsistent.

Proof. Fix a model M of S ′ in which φ does not hold. By definition, M must give the
value True to every primitive sentence pi ∈ S ′ and must give the value False to every
primitive sentence pi 6∈ S ′, since in the latter case we have that ‘~pi’ ∈ S ′. Let ψ be
the conjunction (i.e., concatenation using ‘&’ operators) of all sentences in S ′, i.e., the
conjunction of all the pi sentences/their negations, as each appears in S ′. By the semantic
definition of evaluating conjunctions, there is a single possible truth-value assignment to
all the pi sentences that makes ψ evaluate to True, and this naturally is precisely the
above-described truth-value assignment to the pi sentences by our model M .

We claim that ‘(ψ→~φ)’ is a tautology. To see this, we will view φ as a propositional
formula over the pi sentences (to be completely formally, we would have had to phrase the
discussion that follows in terms of the propositional skeleton of φ). Since φ is quantifier-free
and p1, ..., pn are all of its primitive subformulas, φ indeed is a propositional formula over
the pi sentences, that is, it is composed of the pi sentences using only logical operators.
Therefore, the truth value of φ in any model is completely determined by the truth values
of the pi sentences in that model, and therefore the truth value of ‘(ψ→~φ)’ in any model is
also completely determined by the truth values of the pi sentences in that model. In order
to show that ‘(ψ→~φ)’ is a tautology it therefore suffices to show that any truth-value
assignment to the pi sentences satisfies ‘(ψ→~φ)’. Since, as noted above, there is a single
truth-value assignment to the pi sentences that satisfies ψ, we only need to show that this
assignment also satisfies ‘~φ’, but this exactly is the meaning of our assumption that φ gets
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value False in the model M (which we have argued to correspond to the unique assignment
that makes ψ evaluate to True).

We can now obtain a proof of a contradiction from S ′ ∪ {φ} by first proving ψ from all
of its primitive subformulas/their negations (that are all in S ′), and then applying MP to
the tautology ‘(ψ→~φ)’ to deduce ‘~φ’. Together with φ we thus prove the contradiction
‘(φ&~φ)’. (Or, concisely as you have probably done in your code, since ψ is a tautological
implication of its primitive subformulas/their negations that are in S ′, and since MP is
also tautological, simply derive ‘(φ&~φ)’, or any other contradiction, as a tautological
implication of φ as well as all of its primitive subformulas/their negations that are in S ′.)

Note that the proof of the above lemma uses the fact that we have every tautology at
our disposal when writing a proof. This is in unlike our “usual” usage of tautologies in
proofs so far, which was limited to specific “nice” or “simple” tautologies that do save some
clutter in our proofs but each of which we could have manually proved separately had we
wanted to. The fact that we have every tautology at our disposal, as really is required in
the proof of the above lemma, even if we are not allowed to use tautology lines (as long as
we can use the schema equivalents of our propositional axiomatic system instead), is due
to the Tautology Theorem that your work in the first part of this book proved. This is
a key place on the way to proving the Completeness Theorem for Predicate Logic, where
the Tautology Theorem is used.

2 Closing a Set
With the lemma on Completeness for Closed Sets in hand, to deduce the Completeness
Theorem it is enough to show that every set of sentences in prenex normal form can be
“closed” (i.e., can have sentences added to it to obtain a closed set of sentences in prenex
normal form) without losing consistency (i.e., so that if the original set is consistent, then
so is the closed set), since then we will be able to first “close” this set and then “read off”
a model (or generate a contradiction, if the “original” set of sentences was not consistent
to begin with) as in Task 3. It is therefore enough to prove the following lemma:

Lemma (Consistency-Preserving Closure). For every (possibly infinite) consistent set of
sentences in prenex normal form S, there exists a closed consistent superset of sentences
in prenex normal form S̄ ⊇ S.

The high-level idea of “closing” S is to iteratively add more and more sentences that
help satisfy one of the three closure conditions, in a way that does not lose consistency.
In the following sequence of tasks you will indeed show that given any nonclosed set of
sentences, it is always possible to add to this set an additional sentence that satisfies an
additional closure condition, and, crucially, to do this without losing consistency. In the
end of this section, we will discuss how to combine your solutions to these various tasks to
“close” a set S. This last step will be somewhat involved, and in fact as we will see, for
more than one reason we will have no choice but to carry out parts of the proof of this last
step mathematically rather than programmatically.

2.1 Primitive Closure
We start addressing the three closure conditions by showing how to satisfy a primitive
closure condition. We would like to show that for any primitive sentence φ, we can add
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either φ or its negation ‘~φ’ to our consistent set of sentences S without losing consistency.
We will actually show more generally that if S is consistent, then for every arbitrary (not
necessarily primitive) sentence φ, we can add either φ or its negation ‘~φ’ to S without
losing consistency. It is not programmatically easy to figure out which of these can be added
without losing consistency, but in the next task you will nonetheless programmatically
prove that one of these is possible, by showing that if both S ∪ {φ} is inconsistent and
S ∪ {‘~φ’} is inconsistent, then S was already inconsistent to begin with.

Task 4. Implement the missing code for the function combine_contradictions(
proof_from_affirmation, proof_from_negation). This function takes as input two
proofs of contradictions, both from almost the same set of assumption/axiom sen-
tences, with the only difference between the assumptions of the two proofs being
that each has an extra simple assumption (with no templates), with the extra as-
sumption of proof_from_negation being the negation of the extra assumption of
proof_from_affirmation. The function returns a proof of a contradiction from the as-
sumptions/axioms that are common to both proofs.

predicates/completeness.py

def combine_contradictions(proof_from_affirmation: Proof,
proof_from_negation: Proof) -> Proof:

"""Combines the given two proofs of contradictions, both from the same
assumptions/axioms except that the latter has an extra assumption that is
the negation of an extra assumption that the former has, into a single proof
of a contradiction from only the common assumptions/axioms.

Parameters:
proof_from_affirmation: valid proof of a contradiction from one or more

assumptions/axioms that are all sentences and that include
`Prover.AXIOMS`.

proof_from_negation: valid proof of a contradiction from the same
assumptions/axioms of `proof_from_affirmation`, but with one
simple assumption (i.e., without any templates) `assumption`
replaced with its negation '˜`assumption`'.

Returns:
A valid proof of a contradiction from only the assumptions/axioms common
to the given proofs (i.e., without `assumption` or its negation).

"""
assert proof_from_affirmation.is_valid()
assert proof_from_negation.is_valid()
common_assumptions = proof_from_affirmation.assumptions.intersection(

proof_from_negation.assumptions)
assert len(common_assumptions) == \

len(proof_from_affirmation.assumptions) - 1
assert len(common_assumptions) == len(proof_from_negation.assumptions) - 1
affirmed_assumption = list(proof_from_affirmation.assumptions -

common_assumptions)[0]
negated_assumption = list(proof_from_negation.assumptions -

common_assumptions)[0]
assert len(affirmed_assumption.templates) == 0
assert len(negated_assumption.templates) == 0
assert negated_assumption.formula == \

Formula('˜', affirmed_assumption.formula)
assert proof_from_affirmation.assumptions.issuperset(Prover.AXIOMS)
assert proof_from_negation.assumptions.issuperset(Prover.AXIOMS)
for assumption in common_assumptions.union({affirmed_assumption,
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negated_assumption}):
assert len(assumption.formula.free_variables()) == 0

# Task 12.4

Hint: One possible approach is to start by applying the function
proof_by_way_of_contradiction() to each of the given proofs.6

Your solution to Task 4 proves the following lemma:

Lemma. Let S be a (possibly infinite) consistent set of sentences. For every sentence φ,
either S ∪ {φ} is consistent or S ∪ {‘~φ’} is consistent (or both).

Notice that while Task 4 applies to any sentence φ, to get the primitive closure condition
we only need to apply it to primitive sentences of the form ‘R(c1,. . . ,cn)’ where R is one
of the relation names that appear in S and n is the arity of R, and each ci is a constant
name that appears somewhere in S. So, to “primitively close” a finite S, since there
are only finitely many such primitive sentences that contain relation names and constant
names from S, we could simply go over all of them one by one, adding each of them or its
negation (whichever does not violate consistency at that point) until we reach a state in
which for each sentence of this form, either it or its negation is in S, i.e., a state in which
S is primitively closed. As noted above, it is not programmatically easy to figure out
which of these two sentences (the primitive or its negation) can be added without losing
consistency,7 so we will not program this step of the construction, but will rather make
do for the mathematical proof ahead with the knowledge that one of these can indeed be
done, as you have proved in Task 4.

2.2 Universal Closure
The next two tasks deal with satisfying a universal closure condition. We would like to show
that for any universal sentence ‘∀x[φ(x)]’ that our consistent set of sentences S contains,
we can add to S any universal instantiation ‘φ(c)’ of it, for any constant name c, without
losing consistency. To prove this, we will show that if the enlarged set is inconsistent, then
S was already inconsistent to begin with.

Task 5. Implement the missing code for the function
eliminate_universal_instantiation_assumption(proof, universal, constant).
This function takes as input a proof of a contradiction from a set of assumption/axiom
sentences, a sentence universal that is an assumption of the given proof of the form
‘∀x[φ(x)]’ for some variable name x, and a constant name constant such that another
assumption of the given proof is the universal instantiation ‘φ(constant)’ of universal
with this constant name. The function returns a proof of a contradiction from the same
assumptions/axioms except the universal instantiation ‘φ(constant)’.

6While this approach results in an implementation that is conceptually not dissimilar from your imple-
mentation of reduce_assumption() from Chapter 6, and while the functionalities of these two functions
are not dissimilar and each of them crucially relies on a respective deduction theorem, we note that each
of these two functions plays a decidedly different role in the proof of the completeness theorem that
corresponds to it.

7If it were easy, then we would not have any conjectures since we would immediately know for each
sentence whether or not it contradicts our axioms, and so all Mathematicians would be out of a job. . .
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predicates/completeness.py

def eliminate_universal_instantiation_assumption(proof: Proof,
universal: Formula,
constant: str) -> Proof:

"""Converts the given proof of a contradiction, whose assumptions/axioms
include `universal` and `instantiation`, where the latter is the universal
instantiation of the former with the constant name `constant`, to a proof
of a contradiction from the same assumptions without `instantiation`.

Parameters:
proof: valid proof of a contradiction from one or more

assumptions/axioms that are all sentences and that include
`Prover.AXIOMS`.

universal: assumption of the given proof that is universally quantified.
constant: constant name such that the formula `instantiation` obtained

from the statement quantified by `universal` by replacing all free
occurrences of the universal quantification variable name by the
given constant name, is an assumption of the given proof.

Returns:
A valid proof of a contradiction from the assumptions/axioms of the
given proof except `instantiation`.

"""
assert proof.is_valid()
assert Schema(universal) in proof.assumptions
assert universal.root == 'A'
assert is_constant(constant)
assert Schema(universal.statement.substitute({universal.variable:

Term(constant)})) in \
proof.assumptions

for assumption in proof.assumptions:
assert len(assumption.formula.free_variables()) == 0

# Task 12.5

Hint: Once again, one possible approach is to start by applying the function
proof_by_way_of_contradiction() to the given proof.

Your solution to Task 5 proves the following lemma:

Lemma. Let S be a (possibly infinite) consistent set of sentences. For every universally
quantified sentence ‘∀x[φ(x)]’ ∈ S and every constant name c, we have that S ∪ {‘φ(c)’} is
consistent.

So, to “universally close” a finite S, for each universal sentence in S we could go ahead
and start by adding to S, without losing consistency, all of the universal instantiations
of this sentence with respect to all constant names that appear somewhere in S. This,
however, would not guarantee that the enlarged S is universally closed, since some of the
added instantiations may themselves be universally quantified. For example, if we start
with ‘∀x[∀y[R(x,y,a,b)]]’, then the set after adding all of the universal instantiations of
‘∀x[∀y[R(x,y,a,b)]]’ will be {‘∀x[∀y[R(x,y,a,b)]]’, ‘∀y[R(a,y,a,b)]’, ‘∀y[R(b,y,a,b)]’}, which is
not universally closed since it is missing universal instantiations of the two added sentences
‘∀y[R(a,y,a,b)]’ and ‘∀y[R(b,y,a,b)]’. So, we would have to repeat this process to add
all of their universal instantiations and so on, until we would reach a state in which S
is universally closed. Fortunately, this would only take a finite number of repetitions,
which equals the maximum number of universal quantifications at the top level of a single
formula in the original S (since in each repetition, a newly added universal instantiation
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has one fewer quantifier than the universal sentence from the previous repetition that it
instantiates). In the next task you will perform one round of this process.

Task 6. Implement the missing code for the function universal_closure_step(
sentences), which returns a superset of the given (finite) set of sentences in prenex normal
form, that additionally contains, for every universally quantified sentence ‘∀x[φ(x)]’ in the
given set, all of the universal instantiations of this sentence with respect to every constant
name that appears somewhere in the given sentences.

predicates/completeness.py

def universal_closure_step(sentences: AbstractSet[Formula]) -> Set[Formula]:
"""Augments the given sentences with all universal instantiations of each
universally quantified sentence from these sentences, with respect to all
constant names from these sentences.

Parameters:
sentences: prenex-normal-form sentences to augment with their universal

instantiations.

Returns:
A set of all of the given sentences, and in addition any formula that
can be obtained from the statement quantified by any universally
quantified sentence from the given sentences by replacing all
occurrences of the quantification variable name with some constant name
from the given sentences.

"""
for sentence in sentences:

assert is_in_prenex_normal_form(sentence) and \
len(sentence.free_variables()) == 0

# Task 12.6

Example: If we call this function with a set containing only the sentence
‘∀x[∀y[R(x,y,a,b)]]’, then the returned set will contain, in addition to the original sentence,
also the two sentences ‘∀y[R(a,y,a,b)]’ and ‘∀y[R(b,y,a,b)]’, and if we call this function again
on this returned set, then the new returned set will contain, in addition to the three above
sentences, also the four sentences ‘R(a,a,a,b)’, ‘R(a,b,a,b)’, ‘R(b,a,a,b)’, and ‘R(b,b,a,b)’
(and if we call this function again on this returned set, then the same set would again be
returned).

2.3 Existential Closure
Finally, we get to satisfying an existential closure condition. We would like to show that
for any existential sentence ‘∃x[φ(x)]’ that our consistent set of sentences S contains, we
can add to S an existential witness of the form ‘φ(c)’, where c is a new (not previously in
S) “witnessing” constant name,8 without losing consistency. Similarly to Task 5, to prove
this we will show that if the enlarged set is inconsistent, then S (which does not use this
new witnessing constant name at all) was already inconsistent to begin with. To do so,
given the proof of a contradiction from all of the sentences including the added existential

8Such a witnessing constant name is often called a “Henkin” constant name, after the Jewish-American
logician Leon Henkin. While the Completeness Theorem was first proven by the Austrian (and later
American) logician Kurt Gödel, after whom it is customarily named Gödel’s Completeness Theorem,
the simpler strategy for proving this theorem that has become standard in Mathematical Logic courses,
and which we also follow, is due to Henkin.
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witness ‘φ(c)’, you will start with an intermediate step that replaces all of the occurrences
of this new witnessing constant name c, in this proof and in all of its assumptions, with a
new variable name. So, for example, if this new variable name is ‘zz’, then the assumption
‘φ(c)’ becomes ‘φ(zz)’ after the replacement (both as an assumption and as the formula
of any lines in which this assumption is instantiated). As it turns out, the validity of the
proof is actually maintained following this replacement: the propositional skeletons of line
formulas do not change, so tautologies remain tautologies (and for the same reason, the
conclusion of the proof remains a contradiction); any MP application remains valid since
the same replacements are made in all three formulas involved; any UG application remains
valid since variable names remain variable names and the same replacements are made in
both formulas involved; and finally, any formula justified by an assumption/axiom remains
a legal instance since we perform the replacement also in the assumption/axiom and in any
instantiation map, and since there are no quantifications anywhere over the new variable
name, so no instance of it can become illegally bound during any instantiation. Given the
proof that results from this replacement, you will then show that a contradiction can be
proven from the assumptions of this proof even without the assumption ‘φ(zz)’ (which in
this proof replaced the existential witness assumption ‘φ(c)’ of the original proof). In other
words (since the witnessing constant name is a new constant name that does not appear in
any assumption of the original proof other than ‘φ(c)’), a contradiction can be proven from
the assumptions of the original proof even without the existential witness ‘φ(c)’, which is
what we set out to show.
Task 7.

a. Implement the missing code for the function replace_constant(proof, constant,
variable), which takes a proof, a constant name that (potentially) appears in the
assumptions of the proof and/or in the proof itself, and a variable name that does not
appear anywhere in the proof or in the assumptions, and returns a “similar” (and still
valid) proof where every occurrence of the given constant name in the assumptions
and in the proof is replaced with the given variable name.

predicates/completeness.py

def replace_constant(proof: Proof, constant: str, variable: str = 'zz') -> \
Proof:

"""Replaces all occurrences of the given constant name in the given proof
with the given variable name.

Parameters:
proof: valid proof in which to replace.
constant: constant name that does not appear as a template constant name

in any of the assumptions of the given proof.
variable: variable name that does not appear anywhere in the given proof

or in its assumptions.

Returns:
A valid proof where every occurrence of the given constant name in the
given proof and in its assumptions is replaced with the given variable
name.

"""
assert proof.is_valid()
assert is_constant(constant)
assert is_variable(variable)
for assumption in proof.assumptions:

assert constant not in assumption.templates
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assert variable not in assumption.formula.variables()
for line in proof.lines:

assert variable not in line.formula.variables()
# Task 12.7a

Hint: the substitute() methods of the classes Formula and Term may be useful
here.

b. Implement the missing code for the function
eliminate_existential_witness_assumption(proof, existential,
constant). This function takes as input a proof of a contradiction from a
set of assumption/axiom sentences, a sentence existential that is an assump-
tion of the given proof of the form ‘∃x[φ(x)]’ for some variable name x, and a
constant name constant such that another assumption of the given proof is the
existential witness ‘φ(constant)’ of existential with this (witnessing) constant
name and such that this constant name does not appear anywhere else in the
assumptions/axioms. The function returns a proof of a contradiction from the same
assumptions/axioms except the existential witness ‘φ(constant)’.

predicates/completeness.py

def eliminate_existential_witness_assumption(proof: Proof,
existential: Formula,
constant: str) -> Proof:

"""Converts the given proof of a contradiction, whose assumptions/axioms
include `existential` and `witness`, where the latter is the existential
witness of the former with the witnessing constant name `constant`, to a
proof of a contradiction from the same assumptions without `witness`.

Parameters:
proof: valid proof, which does not contain the variable name 'zz' in its

lines or assumptions, of a contradiction from one or more
assumptions/axioms that are all sentences and that include
`Prover.AXIOMS`.

existential: assumption of the given proof that is existentially
quantified.

constant: constant name such that the formula `witness` obtained from
from the statement quantified by `existential` by replacing all free
occurrences of the existential quantification variable name by the
given constant name, is an assumption of the given proof, and such
that this constant name does not appear in any assumption of the
given proof except `witness`.

Returns:
A valid proof of a contradiction from the assumptions/axioms of the
given proof except `witness`.

"""
assert proof.is_valid()
assert Schema(existential) in proof.assumptions
assert existential.root == 'E'
assert is_constant(constant)
witness = existential.statement.substitute({existential.variable:

Term(constant)})
assert Schema(witness) in proof.assumptions
for assumption in proof.assumptions:

assert len(assumption.formula.free_variables()) == 0
assert 'zz' not in assumption.formula.variables()
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for assumption in proof.assumptions - {Schema(witness)}:
assert constant not in assumption.formula.constants()

for line in proof.lines:
assert 'zz' not in line.formula.variables()

# Task 12.7b

Guidelines: In the given proof, replace the given constant name with the new
variable name ‘zz’ that you may assume does not appear anywhere in the origi-
nal proof, use proof_by_way_of_contradiction() to prove ‘~φ(zz)’ from the as-
sumptions without witness, and finally prove a contradiction from this and from
‘∃x[φ(x)]’.

Your solution to Task 7 (along with the above reasoning of why the replacement in the
first part of that task maintains the validity of the proof) proves the following lemma:
Lemma. Let S be a (possibly infinite) consistent set of sentences. For every existentially
quantified sentence ‘∃x[φ(x)]’ ∈ S and new constant name c that does not appear anywhere
in S, we have that S ∪ {‘φ(c)’} is consistent.

So, to “existentially close” a finite S, for each existential sentence in S we could go
ahead and start by adding to S, without losing consistency, an existential witness for
this sentence using a new witnessing constant name that does not appear anywhere in S.
Once again, since some of the added existential witnesses may themselves be existentially
quantified (and so each of these would itself require an existential witness for the set
to be existentially closed), we may need to repeat this process a finite number of times
(which equals the maximum number of existential quantifications at the top level of a
single formula in the original S) until we reach a state in which S is existentially closed.
Analogously to Task 6 above, in the next task you will perform one round of this process.
Task 8. Implement the missing code for the function existential_closure_step(
sentences), which returns a superset of the given (finite) set of sentences in prenex nor-
mal form, that additionally contains, for every existentially quantified sentence ‘∃x[φ(x)]’
in the given set, an existential witness for this sentence with a new witnessing constant
name that does not appear anywhere in S, if a witness for this sentence is not already
contained in the given sentences.

predicates/completeness.py

def existential_closure_step(sentences: AbstractSet[Formula]) -> Set[Formula]:
"""Augments the given sentences with an existential witness that uses a new
constant name, for each existentially quantified sentence from these
sentences for which an existential witness is missing.

Parameters:
sentences: prenex-normal-form sentences to augment with any missing

existential witnesses.

Returns:
A set of all of the given sentences, and in addition for every
existentially quantified sentence from the given sentences, a formula
obtained from the statement quantified by that sentence by replacing all
occurrences of the quantification variable name with a new constant name
obtained by calling `next(fresh_constant_name_generator)`.

"""
for sentence in sentences:

assert is_in_prenex_normal_form(sentence) and \
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len(sentence.free_variables()) == 0
# Task 12.8

Guidelines: Use next(fresh_constant_name_generator) (imported for you from
logic_utils.py) to generate new constant names. You may assume that the given set of
sentences does not contain constant names that you have generated this way.
Hint: The substitute() method of class Formula may be useful both for checking if an
existential witness for a given sentence already exists, and for creating such a witness if
one does not already exist.
Example: If we call this function with a set containing only the sentence ‘∃x[∃y[R(x,y)]]’,
then the returned set will contain, in addition to the original sentence, also the sen-
tence ‘∃y[R(e1,y)]’, where ‘e1’ stands here for a constant name returned by calling next(
fresh_constant_name_generator), and if we call this function again on this returned
set, then the new returned set will contain, in addition to the two above sentences, also
the sentence ‘R(e1,e2)’, where ‘e2’ stands here for an additional constant name returned
by calling next(fresh_constant_name_generator) (and if we call this function again on
this returned set, then the same set would again be returned).

2.4 “Combined” Closure
Let us recap our proposed strategy for proving the Completeness Theorem for Predicate
Logic: given a finite set of formulas F , we can convert each formula in F into a sentence
in prenex normal form to obtain an equivalent set S. Now, given this finite S, we can
first add each primitive sentence (composed of a relation name that is used in S and
constant names that appear somewhere in S) or its negation to S so that S becomes
primitively closed. While for a given primitive sentence it is hard to determine whether
it or its negation should be added to S without losing consistency (i.e,. so that if S
were consistent before the addition, it would remain consistent), which is why we have
not programmed this step, you have shown in Task 4 that one of the two can be added
without losing consistency. Once S is primitively closed, we can then add to S all universal
instantiations with respect to constant names that appear anywhere in S of all universal
sentences from S, as in Task 6, and repeat this process finitely many times until S becomes
universally closed. (You have shown in Task 5 that consistency is not lost while doing so.)
Once S is primitively and universally closed, we can then add to S existential witnesses
for all existential sentences in S as in Task 8, and repeat this process finitely many times
until S is existentially closed. (You have shown in Task 7 that consistency is not lost while
doing so.) So—have we arrived at a set S that is closed with respect to C? Unfortunately,
while the resulting set S is indeed existentially closed, it may no longer necessarily still
be primitively or universally closed, for two reasons. The first reason, which is easy to fix,
is that existentially closing S may have added universal sentences to it that are missing
instantiations in S—this can be easily fixed by repeatedly alternating between running
your solutions of Tasks 6 and 8, so that sentences that start with sequences of alternating
quantifications are properly dealt with. The second, more major reason, is that since in the
last step (existentially closing S) we have added more constant names to S, we have thus
changed the primitive- and universal-closure conditions, as these require that S contain
primitive sentences or their negations, and universal instantiations, that are constructed
using any constant names that appear somewhere in S. The natural tendency is to keep
iterating and alternate between primitively, universally, and existentially closing S, hoping
that a closed S will eventually be reached. If a closed S is indeed reached, then as you
have shown in Task 3, we can either:
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• “read off” a model of S, which is therefore also a model of the “original” S (since the
latter is a subset of the “new” S), and is therefore also a model of F since you have
shown in Chapter 11 that the prenex normal form of any formula implies that formula
(and since the sentence corresponding to a formula implies that formula via UI), and
so by the Soundness Theorem, any model of the prenex-normal-form sentence is also
a model of the original formula.
—or—

• prove a contradiction from S and from our six logical axiom schemas, in which case
due to Tasks 4, 5, and 7, we can prove a contradiction from the “original” S, in which
case we can prove a contradiction from F and from our six logical axiom schemas
since you have shown in Chapter 11 that the prenex normal form of any formula
is provable from that formula and from our six (or equivalently twenty-two) logical
axiom schemas (and since the sentence corresponding to a formula is provable from
that formula via UG),9 so F is inconsistent.

Recall that all of the above can be done if we indeed eventually reach a closed S.
However, as it turns out, reaching a closed S may fail to happen within any finite num-
ber of steps. Consider, for example, the consistent set S containing only the sentences
‘∀y[∃x[GT(x,y)]]’ and ‘SAME(0,0)’. Since the constant name ‘0’ appears in this set of
sentences, in order to universally close S our construction adds an existential sentence
‘∃x[GT(x,0)]’. Now, to existentially close S we need to add an existential witness for
this sentence, say, ‘GT(e1,0)’. Once we have added this existential witness, ‘e1’ appears
in S, so in order to universally close S again, we need to “go back” and add the sentence
‘∃x[GT(x,e1)]’ to S, which in turn requires adding a new existential witness ‘GT(e2,e1)’
to S, which in turn requires adding the sentence ‘∃x[GT(x,e2)]’ to S, which in turn re-
quires adding a new existential witness ‘GT(e3,e2)’ to S, and so on. (And of course,
for any pair of two constant names ‘ei’ and ‘ej’ added this way, we would also need to
add either ‘GT(ei,ej)’ or its negation—whichever does not make S lose consistency, or
whichever we want if neither does—to get primitive closure, etc.) In fact, if we hap-
pened to start with a few more sentences that force ‘GT’ to be a strict total order
(and in particular, transitive: ‘∀x[∀y[∀z[((GT(x,y)&GT(y,z))→GT(x,z))]]]’ and antisym-
metric: ‘∀x[∀y[(GT(x,y)→~GT(y,x))]]’), then no finite model can satisfy these as well as
‘∀y[∃x[GT(x,y)]]’ and ‘SAME(0,0)’.10 So, indeed it is not possible to stop after any fi-
nite number of steps of any kind, regardless of their order, as otherwise we would reach
a closed S with a finite number of constant names, which would imply the existence of a
finite model for the above consistent set of sentences (including transitivity and antisym-
metry), while as we explained such a model cannot exist. Programmatically, we will thus
not be able to close our set of sentences. Luckily, as we will now see, mathematically we
may continue alternating between our three different step types “to infinity” and obtain
a closed set. Then we will be able to complete the proof of the Completeness Theorem
exactly as you have done in Task 3 and as detailed above: by either “reading off” a model
of S from this closed set, which is also a model of F , or proving a contradiction from S,

9And as you have shown in Chapter 9, by the first part of this book this may even be proven without
tautology lines, with the schema equivalents of our propositional axiomatic system instead.

10Intuitively, if we interpret ‘GT(x,y)’ as x > y, then ‘∀y[∃x[GT(x,y)]]’ implies that for every element
there exists an even-greater element, and ‘GT’ being a strict total order means, loosely speaking, that no
“cycles” of any length (such as 0 > e2 > e1 > 0 or even 0 > 0) are allowed. So, to satisfy all of these, an
infinite chain 0 < e1 < e2 < · · · is required.
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which can be transformed via Tasks 4, 5, and 7, and via your solution of Chapter 11, to a
proof of a contradiction from F .

Proof of the lemma on Consistency-Preserving Closure. We start with a consistent set S
of sentences in prenex normal form that we enumerate11 as S = {s1, s2, s3, . . .}. We will
assume that we have access to an infinite reservoir of constant names (say, those generated
by next(fresh_constant_name_generator)) that do not appear in S. We will build a
sequence of finite sets S0 ⊆ S1 ⊆ S2 ⊆ · · · (therefore only finitely many constant names
and relation names appear in each) such that S ∪ Si is consistent for every i, and such
that each Si 1) contains s1, . . . , si, 2) contains either ‘R(c1,. . . ,cn)’ or ‘~R(c1,. . . ,cn)’ for
every relation name R that appears somewhere in Si−1 and every tuple of constant names
(c1, . . . , cn) where n is the arity of R and each cj appears somewhere in Si−1, 3) contains
all universal instantiations via constant names that appear somewhere in Si−1 of every
universal formula in Si−1, and 4) contains an existential witness for every existential
formula in Si−1.

As the basis of our construction, we set S0 = ∅. At step i, we start with Si = Si−1, and
augment it as follows:

1. Add si to Si. (This does not change S ∪ Si, so its consistency is maintained.)

2. Sequentially iterating over all (finitely many) relation names R that appear some-
where in Si−1 and (finitely many) tuples of constant names (c1, . . . , cn) where n is the
arity of R and each cj appears somewhere in Si−1, we in turn add either ‘R(c1,. . . ,cn)’
or its negation ‘~R(c1,. . . ,cn)’ to Si, so that S ∪ Si remains consistent at each point
(one of these must maintain consistency by the lemma that corresponds to Task 4).

3. As you have implemented in Task 6, for every universally quantified sentence
‘∀x[φ(x)]’ ∈ Si−1 and every constant name c that appears somewhere in Si−1, we
add the universal instantiation ‘φ(c)’ to Si (which keeps S ∪ Si consistent by the
lemma that corresponds to Task 5).

4. As you have implemented in Task 8, for every existentially quantified sentence
‘∃x[φ(x)]’ ∈ Si−1 for which an existential witness is not yet present in Si−1, we
take a fresh constant name c from our reservoir (so c does not appear anywhere in S
and was not used previously), and add the existential witness ‘φ(c)’ to Si (which
keeps S ∪ Si consistent by the lemma that corresponds to Task 7).

Notice that in each step we only add a finite number of sentences and constant names,
and therefore at no step is our reservoir of fresh constant names depleted. Now, let us
define S̄ = ⋃∞

i=1 Si. First note that S ⊆ S̄ since for every i, we have that si was added to
Si and so si ∈ Si ⊆ S̄. Second, S̄ is consistent: otherwise there would have been a proof
of a contradiction from S̄, and since this proof would have involved only a finite set of
sentences, which would all have thus already been in the same Si for some (finite) i (since
for each k, sentence number k of these finitely many sentences would have been in Sik

for
11As in Propositional Logic, by the way in which we defined predicate-logic formulas, there are only

countably many of them since they are represented by finite-length strings over a finite alphabet, so we
can enumerate them. If we allowed using constant names or relation names from a set of greater infinite
cardinality (e.g., constant names like cα where α is a real number), then the set of all possible formulas
would no longer be countable, and therefore we would not be able to enumerate it. A closed consistent
superset of S would still exist, though, and could be constructed via analogous core arguments but with
some additional supporting arguments that would require some background in Set Theory.
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some ik, and so all of these finitely many sentences would have been in Si for i = maxk Sik
),

this proof would have shown Si to be inconsistent, contradicting that by construction it
is consistent. Third, S̄ is closed: for primitive closure, take some relation name R that
appears in S̄ and tuple of constant names (c1, . . . , cn) where n is the arity of R and each
cj appears somewhere in S̄, then for some i we already have that the relation name R
and all c1, . . . , cn appear in Si, so either ‘R(c1,. . . ,cn)’ or its negation is in Si+1 ⊆ S̄.
Similarly for universal closure, take some universally quantified formula ‘∀x[φ(x)]’ ∈ S̄
and constant name c that appears somewhere in S̄, then for some i we already have that
‘∀x[φ(x)]’ ∈ Si and that c appears somewhere in Si, so the formula ‘φ(c)’ is in Si+1 ⊆ S̄.
Finally, for existential closure take some existentially quantified formula ‘∃x[φ(x)]’ ∈ S̄,
then for some i we already have that ‘∃x[φ(x)]’ ∈ Si, so an existential witness φ(c) for
some constant name c exists in Si+1 ⊆ S̄.

3 The Completeness Theorem
The lemmas on Consistency-Preserving Closure and on Completeness for Closed Sets (along
with the Prenex Normal Form Theorem, which allows us restrict our analysis in these
lemmas to sentences in prenex normal form) together prove the “hard direction” of the
Completeness Theorem for Predicate Logic. Since, as explained in the beginning of this
chapter, the “easy direction” of this theorem follows from the Soundness Theorem for
Predicate Logic, we have thus completed our proof of the Completeness Theorem for
Predicate Logic:

Theorem (The Completeness Theorem for Predicate Logic: “Consistency” Version). A
(possibly infinite) set of predicate-logic formulas has a model if and only if it is consistent.

Looking at our proof of the Completeness Theorem, and in particular at our proof of
the lemma on Consistency-Preserving Closure, focusing on the case of (at most) countably
infinite sets of sentences, we notice that we have actually proved a somewhat stronger result:
that every finite or countably infinite consistent set of formulas has a (at most) countable
model. Since by the Soundness Theorem if a set of formulas has a (even uncountable)
model then it is consistent, we get the following quite remarkable semantic theorem named
after German mathematician Leopold Löwenheim and Norwegian mathematician Thoralf
Skolem:

Theorem (The Löwenheim–Skolem Theorem). Every finite or countably infinite set of
formulas that has a model, also has a (at most) countable model.

Thus, in Predicate Logic we cannot express, using countably many formulas/schemas,
conditions that require uncountability. This may sound strange since, as mentioned in
Chapter 10, all of Mathematics can be expressed in Predicate Logic using the (finitely
many) ZFC axiom schemas, and in particular these schemas can be used to prove Cantor’s
Theorem, which states that the real numbers (a subset of the universe of any model
of ZFC) are uncountable! How is this possible? This riddle is known as “Skolem’s Paradox.”
The solution (which was also given by Skolem, and which explains why this is in fact not a
paradox) is that while indeed the Löwenheim–Skolem Theorem ensures a countable model
of ZFC, that countability is from the point of view of looking from “our model of ZFC” in
which this model was constructed. From the constructed model’s point of view, however,
this set of “reals of the constructed countable model” is not countable! This may happen
since countability of a set is defined as the existence of a 1:1 map from that set to the
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integers. Such a map will not exist as a set in the constructed model, even though it does
exist in “our math.” (And to make things even more confusing, if from the point of view of
that model, you were to create within it an “inner” model of ZFC, then its universe would
be countable both from our point of view and from the point of view of the original model,
but not from the point of view of the “inner” model, and so forth. . . )

4 The Compactness Theorem and the “Provability”
Version of the Completeness Theorem

We will now wish to derive an analogue for Predicate Logic of the Compactness Theorem
for Propositional Logic:

Theorem (The Compactness Theorem for Predicate Logic). A set of predicate-logic for-
mulas has a model if and only if every finite subset of it has a model.

Recall that in Chapter 6, we used the Compactness Theorem, together with the Com-
pleteness Theorem for Finite Sets and with the fact that the syntactic notions of proofs
and consistency are inherently finite concepts, to prove the general Completeness Theorem
(for possibly infinite sets). Since we have already proven the Completeness Theorem for
Predicate Logic for any—even infinite—sets, we can use the reverse order of implication to
prove the Compactness Theorem for Predicate Logic. First we will note that it is still the
case that since proofs are by definition finite, any proof uses finitely many assumptions,
and so if an infinite set of formulas is inconsistent, then a contradiction can already be
proven from finitely many of these assumptions:

Lemma. A set of predicate-logic formulas is consistent if and only if every finite subset of
it is consistent.

We will use the Completeness Theorem for Predicate Logic together with this lemma to
prove the Compactness Theorem for Predicate Logic: a set of predicate-logic formulas has
a model if and only if it is consistent (by the Completeness Theorem), which is true if and
only if every finite subset of it is consistent (by the lemma just stated), which is true of and
only if every finite subset of it has a model (by the Completeness Theorem once again).
That’s it! An illustration of this argument, as well as, for comparison, the argument that
we used in Chapter 6 to prove the Completeness Theorem from the Compactness Theorem,
is given in Figure 2. As in Propositional Logic, the Compactness Theorem for Predicate
Logic is also very useful even on its own.

Finally, as in Propositional Logic, we will want to rephrase the Completeness Theorem
also in a way that talks about provability rather than consistency—a way that is analogous
to the Tautology Theorem in giving a converse to our original statement of the Soundness
Theorem for Predicate Logic:

Theorem (The Completeness Theorem for Predicate Logic: “Provability” Version). Let X
be the set of our basic six logical axiom schemas. For any set A of predicate-logic formulas
and any predicate-logic formula φ, it is the case that A |= φ if and only if A ∪X ` φ.

Proof. We will first show that the theorem holds when φ is a sentence. Since φ holds
in every model that satisfies A, there is no model of A where ‘~φ’ holds, so the set A ∪
{‘~φ′} has no model, and so by the “consistency” version of the Completeness Theorem
it is inconsistent, so a contradiction is provable from it and from X. By the theorem on
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Figure 2: Diagram relating the Completeness and Compactness Theorems in either Propo-
sitional Logic or Predicate Logic. The blue arrows trace our proof of (the “hard direction”
of) the Completeness Theorem for Propositional Logic in Chapter 6 using Finite Com-
pleteness and Compactness. The green arrows trace our proof of (the “hard direction” of)
the Compactness Theorem for Predicate Logic in this chapter using the finiteness of proofs
and Completeness.

Soundness of Proofs by Way of Contradiction (Task 2 of Chapter 11), which is applicable
since φ has no free variable names, this means that ‘~~φ’ is provable from A∪X. Since φ
is a tautological implication of ‘~~φ’, we therefore have that φ is also provable from A∪X.

For general φ, we first universally quantify over all free variable names in φ to obtain a
sentence φ′. Since φ holds in every model that satisfies A, so does φ′, and so, by the above
argument, φ′ is provable from A ∪ X. Since φ is provable from φ′ using UI, we therefore
have that φ is also provable from A ∪X.

This version of the Completeness Theorem, the crowning achievement of your work
throughout this entire book, is, in a sense, justification for the mathematical use of proofs
to try and understand what is true in every mathematical structure. Taking A to be the
field axioms as in Chapter 10, for instance, this theorem tells us that whatever is true
in every field can always be proven using the field axioms and our six (or equivalently
twenty-two) logical axiom schemas. This is quite remarkable: to be fully convinced that
a formula holds in every field, instead of (semantically) checking all the infinitely many
possible fields, it is always enough to (syntactically) verify the validity of some finite proof!
Furthermore, this is true not only for fields, but for any possible axiomatically defined
mathematical structure, be it a group, a vector space, the set of natural numbers, or even,
as already briefly mentioned in Chapter 10, the entirety of modern Mathematics using the
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axiomatization of ZFC (Zermelo–Fraenkel with Choice) Set Theory. Knowing that a proof
always exists for any true statement motivates our search for it. Finding the proof (and
figuring out what to prove), of course, is an entirely different matter. . .
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