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Chapter 13:

oneak Peek at Mathematical Logic 11:
Godel’s Incompleteness Theorem

The journey towards the formalization of all of Mathematics has two legs: understand-
ing the logic by which we formulate proofs, and understanding the basic axioms from which
said proofs can derive all of the truths of Mathematics. In this book we completely figured
out the first leg: we have a small number of simple logical axiomatic schemas and inference
rules that allow us to syntactically prove anything that follows semantically from any set
of axioms!

But what about the other leg, that of choosing the “correct” set of axioms for the whole
of Mathematics? As we have briefly mentioned in Chapter 10, the “usual” set of axioms
accepted by mathematicians is called ZFC: Zermelo—Fraenkel Set Theory with the axiom
of Choice. All of the “usual” mathematics that you have learned is ultimately proved
from these axioms: analysis, algebra, combinatorics, everything in this book, the theory of
computation, and so on.

But, do these axioms suffice for proving all of Mathematics? What does that even
mean? If not, maybe we need to add a single extra axiom or axiom schema? A few extra
axioms or axiom schemas? The attempt to find a set of axioms that would suffice for
settling any mathematical question was a central challenge during the beginning of the
20" century. Let us make this question more concrete.

1 Complete and Incomplete Theories

Consider the group axioms that we have seen in chapter 10:

Group Axioms:
o Zero Axiom: 0 +x =x
o Negation Axiom: —z + 2 =10

o Associativity Axiom: (x 4+ y)+z=z+ (y+ 2)

[predicates/some_proof s. py]

#: The three group axioms
GROUP_AXIOMS = frozenset({'plus(0,x)=x', 'plus(minus(x),x)=0',
'plus(plus(x,y),z)=plus(x,plus(y,z))'})

Beyond the basic symbols of Predicate Logic, the “language” used in these axioms contains
the binary function symbol + (or alternatively in our programs, the binary function name
‘plus’), the unary function symbol — (or alternatively in our programs, the unary function
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name ‘minus’), and the constant name ‘0. Now we can ask a question: do these axioms
suffice for answering any question in this language? l.e., suppose that we have some
sentence, e.g. ‘VxVy[x+y=y+x|’ Is it necessarily true that one can either prove or disprove
it from our given axioms?

Definition (Complete Set of Axioms). A set of axioms A is complete if for any predicate-
logic sentence in its language (i.e., that only uses the function names, relation names, and
constant names that appear somewhere in A) we have either A+ ¢ or AF ‘~¢’

Note that we have used the term “complete” here in a totally different sense than in
the “Completeness” Theorem that was the main focus of this book. The Completeness
Theorem (whether for Predicate Logic or for Propositional Logic) talks about completeness
of a proof system, which asks whether a proof system can syntactically prove everything
that is semantically correct. Completeness of a set of axioms in the sense just defined
above talks about whether an axiomatic system can answer (positively or negatively) every
mathematical question in its language. It is worthwhile to note that using the Completeness
Theorem for Predicate Logic, we can equivalently replace the condition of “either A - ¢
or AF ‘~¢’” in the above definition of the completeness of an axiomatic system by “either
AEgor AE ~¢.7

Back to the group axioms, it is not difficult to see that neither ‘VxVy[x+y=y+x]’ nor its
negation is provable from the group axioms. Why?” because some groups are commutative
(e.g., the real numbers) and some groups are not commutative (e.g., permutation groups!).
Le., we have two models, one in which ‘VxVy[x+y=y+x]" holds and the other in which its
negation holds. So since the answer is not fully determined semantically by the group
axioms, then by the Soundness Theorem for Predicate Logic it follows that these axioms
can neither syntactically prove it nor its negation.

On the other hand, suppose that we add to the group axioms another axiom that states
that there are exactly two elements: ‘(Jy[~y=0]&VxVyVz[((x=y|y=2z)|x=z)])’, and get the
axiomatic system for groups with two elements. It turns out that now we can answer
not only the question of commutativity but also every question. How do we know this?
Again we can go through the semantics and observe (using just a little bit of thought) that
there is only a single possible model of a group with two elements (that is, in a course on
Algebraic Structures we would say that up to trivial degrees of freedom such as renaming
the elements, there is only one group with two elements), and thus by the Completeness
Theorem for Predicate Logic everything that is true in that group is provable from the
axioms for a group with two elements. Thus, since for any statement, either it or its
negation is true in that group, one of these is provable from the four axioms for a group
with two elements (i.e., the three group axioms and the above additional two-element
axiom), and so this set of axioms is complete—the theory of groups with two elements is
complete (but also quite boring).

So some sets of axioms are complete and others are not complete. While we are perfectly
happy with certain theories not being complete—indeed, field theory would be quite boring
if each statement held either in all fields or in no field—we would very much like other
theories to be complete. For example, since “in our minds” it is clear what the natural
numbers are, we would want to axiomatize the natural numbers in a way that completely
determines every truth about them—to find a set of axioms for the theory of the natural
numbers so that given any sentence about the natural numbers, either this sentence or
its negation follows from these axioms. One of the foundational challenges faced by early

'For more details, you are highly encouraged to take a course on Algebraic Structures.
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20"-century mathematicians and logicians was indeed to find a complete set of axioms
for the language of natural numbers that has the constant name ‘0’, the unary successor
function name ‘s’, and the binary function symbols + and - (multiplication), and more
generally, to find a complete set of axioms for “all of Mathematics,” say for the language
of Set Theory that only has the binary relation symbol ‘€. More concretely: Is Peano
Arithmetic complete? Is ZFC itself complete?

Godel’s Incompleteness Theorem, to which this chapter is dedicated, gives a re-
sounding negative answer: not only is Peano Arithmetic not complete for the language
of natural numbers and ZFC is not complete for the language of Set Theory, but these
deficiencies cannot be fixed: for any additional axioms (or axiom schemas) that we add to
any of these axiomatic systems, provided that it is possible to tell whether a formula is a
valid axiom, the enlarged set of axioms remains incomplete! In fact, any sound axiomatic
system that is sufficiently powerful, is necessarily incomplete. Thus, the quest to find the
“ultimate” set of axioms for Mathematics is inherently doomed to failure.

So for the rest of this chapter let us fix some sound “ultimate” axiomatic system
(UAS) that is at least as powerful as Peano Arithmetic in the sense that it can prove the
axioms of Peano Arithmetic.

#: An ultimate axiomatic system; can you find such a set of schemas?
UAS = frozenset({---})

We will prove that this “ultimate” axiomatic system still cannot be complete.

2 Godel Numbering

Godel’s main ingenious “trick” was to let the axiomatic system “talk about itself.” But
since Peano Arithmetic talks about natural numbers, Godel’s first order of business was
to encode formulas, proofs, etc., as natural numbers. In this chapter we will want our
formulas to talk about programs, which are technically not really that far from logical
formulas, so we will encode these instead. Here the program can be given in any general
purpose (“Turing complete”) language, e.g., a Python program given as a string.? Thus
we can formalize this as the following programming “tasks”:?

~

Qef encode_program(program: Program) -> int:
"""Encodes the given program as a natural number.

Parameters:
program: program to encode.

Returns:
A natural number encoding the given program.

20ne language for programs, which may seem less intuitive for programmers at first sight, but which
is designed to capture any program in a theoretically simple way that allows for easy analysis, is to
describe each program as a Turing machine, named after the English mathematician, computer scientist,
cryptanalyst, philosopher, and theoretical biologist Alan Turing, who is widely considered to be the father
of theoretical computer science and artificial intelligence and who played a pivotal role in cracking Nazi
cyphers during World War II, but who was persecuted during his lifetime due to his homosexuality,
eventually leading to his tragic early death.

3Note that in Python, integers are not restricted in size.
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K # Task 13.1 j

/aef is_validly_encoded_program(encoded_program: int) -> bool: h
"""Checks whether the given natural number validly encodes a program.
Parameters:
encoded_program: natural number to check.
Returns:
“"True” "~ if the given natural number validly encodes a program, ~False
otherwise.
nnn
\_ # Task 13.2 Y

We could naturally encode programs in, say, ASCII (or unicode), but Godel was careful
to choose a simple encoding, called G6del numbering, that is “compatible” with Peano
Arithmetic. Specifically, Godel’s encoding allows the implementation of the following task
for Peano Arithmetic:

/aef sentence_saying_program_halts_on_input(encoded_program: int, input: int) \ R
-> Formula:
"""Computes a predicate-logic sentence in the language of Peano arithmetic
that states that the given encoded program halts when run on the given input.
Parameters:
encoded_program: natural number encoding a program.
input: input to the given encoded program.
Returns:
A predicate-logic sentence in the language of Peano arithmetic that
holds in any model for (the axioms of) Peano arithmetic if the program
encoded by “encoded_program™ halts (i.e., eventually terminates rather
than gets stuck in an infinite loop) when run on the given input, and
does not hold in any such model otherwise.
nnn
assert is_validly_encoded_program(encoded_program)
\_ # Task 13.3 Y,

To implement sentence_saying program_halts_on_input (), we desire to be able to
express, using a logical formula in the language of Peano Arithmetic, the behavior of a
computer program on a certain input. In general we would like to be able to express
any question about what the program is doing at any given point in time (e.g., is it still
running?, what is the content of its memory?, etc.), but for simplicity we will focus on the
simple question of whether it halts or keeps running forever (e.g., gets stuck in an infinite
loop.)

Technically, there is some quite nontrivial work in allowing logical formulas to capture
the behavior of programs, and that is beyond the scope of this chapter. (Presumably, that
is what a second book on Mathematical Logic that is written in the same vein as this
book would do.) To get some insight, though, let us give a high-level overview of what
the “sentence saying x halts on y” would look like. The basic idea is simple: it would
claim the existence of a natural number 7" and a sequence s = si,...,sr (encoded as
a natural number) that describes the state of the program (i.e., content of all memory)
at all time steps, and then say that the sequence of steps encodes a correct computa-
tion. Le., the sentence saying that the program encoded by x halts when run on input y
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may be expressed as ‘3s[(Start,(s1,y)&(Vi[Follows,(s;11,s:)|& HaltingState,(sr)))]’, where
‘Start,(s1,y) is a (sub)formula stating that the initial state s; corresponds to the the initial
state of the program z when run with input y, ‘Follows,(s;11,s;)" is a formula stating that
state s;y1 is the result of a single computation step of the program x applied to state s;,
and ‘HaltingState,(s7)’ is a formula stating that state sr is a halting state of the program
x. Each of these three statements requires significant work for us to be able to express it
via a predicate-logic formula. For example, the logic of “reading” from the code of a pro-
gram the information saying what one step of it does to the state of the whole memory is a
complex task. Even the basic building blocks of encoding a whole sequence s = s, ..., sr
as a single number (since Peano Arithmetic only has numbers) is a nontrivial task.

Despite the many details that are needed for the implementation of the above task (and
which could easily fill an entire separate “Mathematical Logic IT through Programming”
follow-up book), the overall picture should be clear: Programming (including, say, the
Python programming language) is part of Mathematics, and thus it should not surprise
us that a language that should handle “usual” mathematics can also logically express
whatever we want about the behavior of a computer program.

To conclude this section, we make the crucial observation that since we assumed
that our “ultimate” axiomatic system UAS is at least as powerful as Peano Arithmetic,
any model of UAS is a model of Peano Arithmetic, and therefore the guarantee of
sentence_saying program_halts_on_input() with respect to Peano Arithmetic in fact
also holds with respect to the language and axioms of UAS: the returned sentence is in the
language of UAS, holds in any model of UAS if the program encoded by encoded_program
halts when run on input, and does not hold in any such model if that program does not
halt when run on input.

3 Undecidability of the Halting Problem

So, say that we sorted out the technical details of how to express the notion that “the
program encoded by x halts when run on input y” as a predicate-logic sentence. (Once
again, this is nontrivial to pull off technically, and the bulk of a second course on Mathe-
matical Logic is usually dedicated to this.) Since it is natural to have programs (such as
compilers) that handle programs, it is tempting to implement a program (rather than a
logical formula) to answer the question of whether “the program encoded by x halts when
run on input y,” i.e., to implement the following function:

(4

~

ef does_halt(encoded_program: int, input: int) -> bool:
"""Checks if the given encoded program halts when run on the given input.

Parameters:
encoded_program: natural number encoding a program.
input: input to the given encoded program.

Returns:
“*True™ " if the program encoded by “encoded_program™ halts (i.e.,
eventually terminates rather than gets stuck in an infinite loop) when
run on the given input, "~ “False = otherwise.
nnn
assert is_validly_encoded_program(encoded_program)
\_ # Can you implement this function?

J

Turing’s famous result is that the Halting Problem is undecidable, that is, it is
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impossible to correctly implement the function does_halt()! Historically, Turing’s Un-
decidability Theorem came after Godel’s Incompleteness Theorem, but we will still
use it (after proving it without using Godel’s Incompleteness Theorem, of course) as an
intermediate step in the proof of the the Incompleteness Theorem:

Theorem (Undecidability of the Halting Problem). There does not exist any way to im-
plement does_halt () correctly.

Proof. We assume by way contradiction that does_halt () is implemented correctly and
provide a contradiction. For this consider the following function:

/aef diagonalize(encoded_program: int) -> None: R
"""Halts if the given encoded program does not halt when run on its given
encoding as input, and enters an infinite loop otherwise.
Parameters:
encoded_program: natural number encoding a program.
nnn
assert is_validly_encoded_program(encoded_program)
if does_halt(encoded_program, encoded_program) :
while True: pass # Infinite loop.
else:
K return J

Looking at the code of diagonalize (), we see that if it gets (an encoding of) a program
x that halts when run on z itself, then diagonalize enters an infinite loop, while if  does
not halt when run on x, then diagonalize halts immediately. All this, assuming of
course, that the function does_halt() was indeed implemented correctly (an assumption
that, recall, we are really trying to disprove by way of contradiction.)

Let us look at the encoding of this function diagonalize() (an encoding that contains
also all the sub-functions used in its implementation, including in particular the assumed
does_halt() function), and let us call it ngiggonaiize- Question: what happens when we
run diagonalize (Ngiqgonatize) ? Well, looking at the code of diagonalize(), there are two
possibilities, either the function call does_halt (Ngiagonatize» Mdiagonatize) returns True or
it returns False (notice that by assumption does_halt() was implemented correctly so it
never gets stuck in an infinite loop and it always halts, returning either False or True).

Case I: does_halt (Ngiagonatizes Mdiagonalize) Teturns True
By the specification of does_halt() this means that the program encoded
by  Ndiagonalize When run on input 7Ngiggonaiize halts. Le., when we run
diagonalize (Ngiqgonatize), it halts.  But now look at the implementation of
diagonalize(): since does_halt (Ngiagonalize » Mdiagonalize) Teturns True, we have that
diagonalize (Ngiagonatize) immediately enters an infinite loop. I.e., the program en-
coded by Ngiagonatize When run on input ngiggonatize does not halt. A contradiction.

Case II: does_halt(Ngiagonatize s Mdiagonalize) Teturns False
By the specification of does_halt() this means that the program encoded by
Ndiagonalize When run on input ngiggonatize does not halt.  ILe., when we run
diagonalize (Ngiagonatize) , it does mot halt. But look again at the implementa-
tion of diagonalize(): since does_halt (Ngiqgonalize » Ndiagonalize) Te€turns False, we
have that diagonalize (Ngiggonalize) immediately halts. Le., the program encoded by
Ndiagonalize When Tun on input ngiagonatize halts. A contradiction. O
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4 The Incompleteness Theorem

So, we have seen that the Halting Problem is undecidable. But now comes the final blow:
if our axiomatic system UAS is complete then we can implement the does_halt () function
after all. To do so, in a nutshell, we will simply search either for a proof of the sentence
saying that the given program halts, or for a proof of its negation. More technically, we
will need to be able to iterate over all possible proofs. For this it would first be convenient
to implement parsing for proofs, similar to the parsing that you implemented for formulas:

( i B
Ve kpredlcates/proofs.py) ~

class Proof:

@staticmethod
def parse(string: str) -> Union[Proof, None]:
"""Parses the given valid string representation into a proof.

Parameters:
string: string to parse.

Returns:
A proof “p such that “str(p)  returns the given string, or ~None "

if the given string is not a valid representation of any proof.
nnn

\_ # Task 13.4 )

Finally, it will also be convenient to have access to a generator (very similar to the
generator fresh_variable_name_generator that you have used throughout this book)
that simply generates all one-character Python strings, then all two-character Python
strings, and so forth. (So for each Python string, if we invoke the generator enough
times we will eventually get that string.) Writing such a generator is a quite an easy
exercise for anyone familiar with writing Python generators (and specifically, since you
used our implementation of fresh_variable_name_generator, it should be clear to you
that there is no problem in implementing such a generator), so we will assume that we
have it implemented as string_generator (possibly imported from, say, logic_utils).

Now, assuming that our “ultimate” axiomatic system UAS is complete, we can finally
show how to implement does_halt () after all:

(4

~

ef does_halt(encoded_program: int, input: int) -> bool:
"""Checks if the given encoded program halts when run on the given input.

Parameters:
encoded_program: natural number encoding a program.
input: input to the given encoded program.

Returns:
““True™~ if the program encoded by ~encoded_program™ halts (i.e.,
eventually terminates rather than gets stuck in an infinite loop) when

run on the given input, "~ “False ~ otherwise.
nnn

assert is_validly_encoded_program(encoded_program)

program_halts_sentence = \
sentence_saying_program_halts_on_input (encoded_program, input)
program_loops_sentence = Formula('™', program_halts_sentence)
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while True:
proof_string = next(string_generator)
proof = Proof.parse(proof_string)

if proof is not None and proof.assumptions == UAS and proof.is_valid():
if proof.conclusion == program_halts_sentence:
return True
if proof.conclusion == program_loops_sentence:
\_ return False )

L.e., our implementation just looks at all possible proofs, trying to find a proof either that
the given encoded program halts on the given input or that the given encoded program
does not halt on the given input. Had UAS been complete, then it would have been
assured that one of these would have been found. Since this would have contradicted the
Undecidability Theorem, we have that UAS cannot be complete:

Theorem (The Incompleteness Theorem). Any such axiomatic system UAS is not com-
plete.

Proof. We will show that if UAS had been a complete axiomatic system then our imple-
mentation of does_halt() would have been correct, which would have contradicted the
undecidability of the Halting Problem. So, assume by way of contradiction that UAS is
complete.

Let encoded_program be an encoded program let and input be an input
to the program encoded by encoded_program. Let ¢ be the formula called
program_halts_sentence in the above alleged implementation of does_halt() when
run on encoded_program and on input. le., let ¢ be the formula returned by
sentence_saying program_halts_on_input(encoded_program, input). Due to our
assumption that UAS is a complete axiomatic system (an assumption that, recall, we
are really trying to disprove by way of contradiction), we have that either ¢ or ‘~¢’ has a
valid proof from UAS. Recall that by definition, this proof is finite and so is its string rep-
resentation. Call the string representation of that proof (i.e., the string returned by calling
str() on that proof) s*. Now, at some point (i.e., after finitely many steps) during the ex-
ecution of does_halt(encoded_program, input), the call to next(string generator)
will return s*. If the proof represented by s* is a valid proof from UAS of ¢, then our
implementation of does_halt () will return True. In this case, due to the Soundness The-
orem for Predicate Logic,* the given program indeed halts when run on input. Thus the
answer returned by our implementation of does_halt() is the correct one! Similarly, if
the proof represented by s* is a valid proof from UAS of ‘~¢’, then our implementation
of does_halt () will return False. In this case, again due to the Soundness Theorem for
Predicate Logic, the given program indeed does not halt when run on input. Thus the
answer returned by our implementation of does_halt () is again the correct one!

Since we are assured that for any possible encoded_program and input, one of these
two possibilities (a proof of ¢ or a proof of its negation) will be found after finitely many
steps, our implementation of does_halt () always returns the correct answer, hence solving
the Halting Problem. A contradiction. m

Re-examining the above chain of arguments, we note that indeed all that it requires is
that the function sentence_saying program_halts_on_input () can be implemented, or
in other words, that the axioms of Peano Arithmetic are sufficiently strong to deal with
programs. Implied here is that if such a sentence is provable from Peano Arithmetic then

“41.e., since UAS is sound, whatever is provable from UAS indeed follows semantically from UAS.
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indeed it soundly describes the behavior of the given encoded program when run on the
given input. As already noted above, there is no problem in implementing this function,
but it is technically challenging, and the bulk of a second book on Mathematical Logic
following this book would be dedicated to developing the techniques to do this.

Have we made any other assumptions regarding our hypothetical “ultimate” axiomatic
system UAS? As you may have noticed, for convenience we have implicitly assumed (in
the Python code, at least) that it consists of finitely many schemas. We nonetheless note
that in fact nothing in our proof depends on such finiteness or on our specific defini-
tion of how schemas may be instantiated. Indeed, we could have replaced the test for
whether proof.assumptions == UAS in our implementation of does_halt() with any
arbitrary code that tests that all of the assumptions of proof are in UAS (or are instan-
tiations of schemas in UAS, however we may wish to define schemas and instantiation).?
This code could even be very inefficient, but all that would be required of it for our proof
to still follow through would be that such code (that never gets stuck in an infinite loop)
would exist, that is, that given a formula, it would be possible to unambiguously decide
on whether or not it is a valid axiom of UAS.

Let us conclude by briefly discussing this decidability condition. We first note that this
is a reasonable condition since an axiomatic system is useless if we cannot verify whether
an assumption used in a proof is part of that system or not. Second, we note that this
condition really is a necessary and meaningful condition of our analysis. Indeed, consider
the following strategy for constructing UAS: we could have “closed” (as in Chapter 12) the
set of axioms of Peano Arithmetic without losing consistency, to obtain a closed superset
of them, and could have chosen this (infinite) closed set as our axiomatic set. As shown in
Chapter 12, a consistent closed set essentially has a single model, so for any sentence, either
the sentence or its negation is true in this model (and hence in any model of this closed
set of axioms), so this closed set of axioms is complete! Nonetheless, our proof shows that
the fatal flaw with this approach is that while such a closed set that contains the axioms
of Peano Arithmetic does exist (we have proved this in Chapter 12), and while any such
closed set indeed is a complete set of axioms, for any such closed set it is undecidable
whether a formula belongs to it or not—that is, it is impossible to implement code that
correctly answers the question “is the following axiom/schema in this set?”. This of course
means that it is hopeless to verify proofs that use any such set as their axiomatic system,
and so such a closed (and hence complete) axiomatic system, while theoretically existing,
is useless to us.

Indeed, the above condition, of decidability of the axiomatic system, really is rather
weak, and the fact that our proof hinges on only this condition shows that the dream of
finding a complete axiomatic system for Mathematics is indeed just that: a dream.

5Similarly, we could have changed the test for whether proof.is_valid() to allow for more inference
rules in our proofs, etc.
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