
DRAFT

This material will be published by Cambridge University Press as:
Mathematical Logic through Python by Yannai A. Gonczarowski and Noam Nisan

This pre-publication version is free to view and download for personal use only. Not for re-distribution,
re-sale or use in derivative works. Please link to: www.LogicThruPython.org

© Yannai A. Gonczarowski and Noam Nisan 2017–2021.

Cheatsheet:

Axioms and Axiomatic Inference Rules
Used in this Book

1 Propositional Logic
MP: Assumptions: ‘p’, ‘(p→q)’; Conclusion: ‘q’

I0: ‘(p→p)’ (I0 SCHEMA: ‘(P()→P())’)
I1: ‘(q→(p→q))’ (I1 SCHEMA: ‘(Q()→(P()→Q()))’)
D: ‘((p→(q→r))→((p→q)→(p→r)))’ ...
I2: ‘(~p→(p→q))’
N: ‘((~q→~p)→(p→q))’

NI: ‘(p→(~q→~(p→q)))’
NN: ‘(p→~~p)’

R: ‘((q→p)→((~q→p)→p))’
A: ‘(p→(q→(p&q)))’ NA1: ‘(~q→~(p&q))’ NA2: ‘(~p→~(p&q))’

O1: ‘(q→(p|q))’ O2: ‘(p→(p|q))’ NO: ‘(~p→(~q→~(p|q)))’
T: ‘T’ NF: ‘~F’

2 Predicate Logic
• Modus Ponens (MP): From φ and ‘(φ→ψ)’, deduce ψ.

• Universal Generalization (UG): From φ deduce ‘∀x[φ]’.

• Tautology: Any formula φ that is a tautology.

• Universal Instantiation (UI): the schema ‘(∀x[φ(x)]→φ(τ))’, where φ(�), x, and
τ are (placeholders for) a parametrized formula, a variable name, and a term respec-
tively.

• Existential Introduction (EI): the schema ‘(φ(τ)→∃x[φ(x)])’, where φ(�), x,
and τ are a parametrized formula, a variable name, and a term respectively.

• Universal Simplification (US): the schema ‘(∀x[(ψ→φ(x))]→(ψ→∀x[φ(x)]))’,
where ψ is a (parameter-less) formula, φ(�) is a parametrized formula, and x is
a variable name. Note that the rules that define the legal instances of schemas re-
quire in particular that (the formula that is substituted for) ψ does not have (the
variable name that is substituted for) x as a free variable name.

257 Draft; comments welcome

www.LogicThruPython.org


DRAFT

Mathematical Logic through Python Yannai A. Gonczarowski and Noam Nisan

• Existential Simplification (ES): the schema ‘((∀x[(φ(x)→ψ)]&∃x[φ(x)])→ψ)’,
where ψ is a formula, φ(�) is a parametrized formula, and x is a variable name.
Note once more that the rules that define the legal instances of schemas require in
particular that ψ does not have x as a free variable name.

• Reflexivity (RX): the schema ‘τ=τ ’, where τ is a term.

• Meaning of Equality (ME): the schema ‘(τ=σ→(φ(τ)→φ(σ)))’, where φ(�) is a
parametrized formula, and τ and σ are terms.

2.1 Additional Axioms
In the following schemas, φ(�) is a parametrized formula, ψ is a formula, and x is a variable
name. Note yet again that the rules that define the legal instances of schemas require in
particular that ψ does not have x as a free variable name.

1. ‘~∀x[φ(x)]’ is equivalent to ‘∃x[~φ(x)]’.

2. ‘~∃x[φ(x)]’ is equivalent to ‘∀x[~φ(x)]’.

3. ‘(∀x[φ(x)]&ψ)’ is equivalent to ‘∀x[(φ(x)&ψ)]’.

4. ‘(∃x[φ(x)]&ψ)’ is equivalent to ‘∃x[(φ(x)&ψ)]’.

5. ‘(ψ&∀x[φ(x)])’ is equivalent to ‘∀x[(ψ&φ(x))]’.

6. ‘(ψ&∃x[φ(x)])’ is equivalent to ‘∃x[(ψ&φ(x))]’.

7. ‘(∀x[φ(x)]|ψ)’ is equivalent to ‘∀x[(φ(x)|ψ)]’.

8. ‘(∃x[φ(x)]|ψ)’ is equivalent to ‘∃x[(φ(x)|ψ)]’.

9. ‘(ψ|∀x[φ(x)])’ is equivalent to ‘∀x[(ψ|φ(x))]’.

10. ‘(ψ|∃x[φ(x)])’ is equivalent to ‘∃x[(ψ|φ(x))]’.

11. ‘(∀x[φ(x)]→ψ)’ is equivalent to ‘∃x[(φ(x)→ψ)]’.

12. ‘(∃x[φ(x)]→ψ)’ is equivalent to ‘∀x[(φ(x)→ψ)]’.

13. ‘(ψ→∀x[φ(x)])’ is equivalent to ‘∀x[(ψ→φ(x))]’.

14. ‘(ψ→∃x[φ(x)])’ is equivalent to ‘∃x[(ψ→φ(x))]’.

In the following schemas, φ(�) and ψ(�) are parametrized formulas, and x and y are
variable names.

15. If φ(x) and ψ(x) are equivalent, then ‘∀x[φ(x)]’ and ‘∀y[ψ(y)]’ are equivalent.

16. If φ(x) and ψ(x) are equivalent, then ‘∃x[φ(x)]’ and ‘∃y[ψ(y)]’ are equivalent.

Cheatsheet 258 Draft; comments welcome


	1 Propositional Logic
	2 Predicate Logic
	2.1 Additional Axioms


