This material will be published by Cambridge University Press as:

Mathematical Logic through Python by Yannai A. Gonczarowski and Noam Nisan

This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. **Please link to: www.LogicThruPython.org**

© Yannai A. Gonczarowski and Noam Nisan 2017–2021.

Cheatsheet:

Axioms and Axiomatic Inference Rules Used in this Book

1 Propositional Logic

MP: Assumptions: 'p', '(p→q)'; Conclusion: 'q'

I0: $(p\rightarrow p)'$ (I0_SCHEMA: $(P()\rightarrow P())'$)

 $\textbf{I1: } `(q \rightarrow (p \rightarrow q))` \\ (\textbf{I1_SCHEMA: } `(Q() \rightarrow (P() \rightarrow Q()))`)$

D: $((p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r)))$

I2: $(\sim p \rightarrow (p \rightarrow q))$

 \mathbf{N} : '(($\sim q \rightarrow \sim p$) $\rightarrow (p \rightarrow q)$)'

NI: $(p \rightarrow (\neg q \rightarrow \neg (p \rightarrow q)))$

NN: '(p→~~p)'

 \mathbf{R} : '((q \rightarrow p) \rightarrow ((\sim q \rightarrow p) \rightarrow p))'

A: $(p\rightarrow (p\&q))$ NA1: $(\sim q\rightarrow \sim (p\&q))$ NA2: $(\sim p\rightarrow \sim (p\&q))$

O1: $(q \rightarrow (p|q))'$ NO: $(p \rightarrow (p|q))'$

T: 'T' **NF**: '~F'

2 Predicate Logic

- Modus Ponens (MP): From ϕ and ' $(\phi \rightarrow \psi)$ ', deduce ψ .
- Universal Generalization (UG): From ϕ deduce ' $\forall x[\phi]$ '.
- Tautology: Any formula ϕ that is a tautology.
- Universal Instantiation (UI): the schema ' $(\forall x[\phi(x)] \rightarrow \phi(\tau))$ ', where $\phi(\Box)$, x, and τ are (placeholders for) a parametrized formula, a variable name, and a term respectively.
- Existential Introduction (EI): the schema ' $(\phi(\tau) \to \exists x [\phi(x)])$ ', where $\phi(\Box)$, x, and τ are a parametrized formula, a variable name, and a term respectively.
- Universal Simplification (US): the schema ' $(\forall x[(\psi \rightarrow \phi(x))] \rightarrow (\psi \rightarrow \forall x[\phi(x)]))$ ', where ψ is a (parameter-less) formula, $\phi(\Box)$ is a parametrized formula, and x is a variable name. Note that the rules that define the legal instances of schemas require in particular that (the formula that is substituted for) ψ does not have (the variable name that is substituted for) x as a free variable name.

- Existential Simplification (ES): the schema ' $((\forall x[(\phi(x)\to\psi)]\&\exists x[\phi(x)])\to\psi)$ ', where ψ is a formula, $\phi(\Box)$ is a parametrized formula, and x is a variable name. Note once more that the rules that define the legal instances of schemas require in particular that ψ does not have x as a free variable name.
- Reflexivity (RX): the schema ' $\tau = \tau$ ', where τ is a term.
- Meaning of Equality (ME): the schema ' $(\tau = \sigma \rightarrow (\phi(\tau) \rightarrow \phi(\sigma)))$ ', where $\phi(\Box)$ is a parametrized formula, and τ and σ are terms.

2.1 Additional Axioms

In the following schemas, $\phi(\Box)$ is a parametrized formula, ψ is a formula, and x is a variable name. Note yet again that the rules that define the legal instances of schemas require in particular that ψ does not have x as a free variable name.

- 1. ' $\sim \forall x [\phi(x)]$ ' is equivalent to ' $\exists x [\sim \phi(x)]$ '.
- 2. ' $\sim \exists x [\phi(x)]$ ' is equivalent to ' $\forall x [\sim \phi(x)]$ '.
- 3. $(\forall x [\phi(x)] \& \psi)$ is equivalent to $\forall x [(\phi(x) \& \psi)]$.
- 4. ' $(\exists x [\phi(x)] \& \psi)$ ' is equivalent to ' $\exists x [(\phi(x) \& \psi)]$ '.
- 5. ' $(\psi \& \forall x [\phi(x)])$ ' is equivalent to ' $\forall x [(\psi \& \phi(x))]$ '.
- 6. $(\psi \& \exists x [\phi(x)])$ is equivalent to $\exists x [(\psi \& \phi(x))]$.
- 7. ' $(\forall x [\phi(x)] | \psi)$ ' is equivalent to ' $\forall x [(\phi(x) | \psi)]$ '.
- 8. ' $(\exists x [\phi(x)] | \psi)$ ' is equivalent to ' $\exists x [(\phi(x) | \psi)]$ '.
- 9. $(\psi | \forall x [\phi(x)])$ is equivalent to $\forall x [(\psi | \phi(x))]$.
- 10. $(\psi | \exists x [\phi(x)])$ is equivalent to $\exists x [(\psi | \phi(x))]$.
- 11. ' $(\forall x [\phi(x)] \rightarrow \psi)$ ' is equivalent to ' $\exists x [(\phi(x) \rightarrow \psi)]$ '.
- 12. ' $(\exists x [\phi(x)] \rightarrow \psi)$ ' is equivalent to ' $\forall x [(\phi(x) \rightarrow \psi)]$ '.
- 13. $(\psi \rightarrow \forall x [\phi(x)])$ is equivalent to $\forall x [(\psi \rightarrow \phi(x))]$.
- 14. $(\psi \to \exists x [\phi(x)])$ is equivalent to $\exists x [(\psi \to \phi(x))]$.

In the following schemas, $\phi(\Box)$ and $\psi(\Box)$ are parametrized formulas, and x and y are variable names.

- 15. If $\phi(x)$ and $\psi(x)$ are equivalent, then ' $\forall x [\phi(x)]$ ' and ' $\forall y [\psi(y)]$ ' are equivalent.
- 16. If $\phi(x)$ and $\psi(x)$ are equivalent, then ' $\exists x [\phi(x)]$ ' and ' $\exists y [\psi(y)]$ ' are equivalent.