propositions.axiomatic_systems module¶
Axiomatic inference rules of propositional logic.
-
propositions.axiomatic_systems.MP= ['p', '(p->q)'] ==> 'q'¶ Modus ponens / implication elimination
-
propositions.axiomatic_systems.I0= [] ==> '(p->p)'¶ Self implication
-
propositions.axiomatic_systems.I1= [] ==> '(q->(p->q))'¶ Implication introduction (right)
-
propositions.axiomatic_systems.D= [] ==> '((p->(q->r))->((p->q)->(p->r)))'¶ Self-distribution of implication
-
propositions.axiomatic_systems.I2= [] ==> '(~p->(p->q))'¶ Implication introduction (left)
-
propositions.axiomatic_systems.N= [] ==> '((~q->~p)->(p->q))'¶ Converse contraposition
-
propositions.axiomatic_systems.NI= [] ==> '(p->(~q->~(p->q)))'¶ Negative-implication introduction
-
propositions.axiomatic_systems.NN= [] ==> '(p->~~p)'¶ Double-negation introduction
-
propositions.axiomatic_systems.R= [] ==> '((q->p)->((~q->p)->p))'¶ Resolution
-
propositions.axiomatic_systems.AXIOMATIC_SYSTEM= frozenset({[] ==> '((p->(q->r))->((p->q)->(p->r)))', [] ==> '(p->~~p)', [] ==> '((~q->~p)->(p->q))', ['p', '(p->q)'] ==> 'q', [] ==> '(p->(~q->~(p->q)))', [] ==> '(~p->(p->q))', [] ==> '((q->p)->((~q->p)->p))', [] ==> '(q->(p->q))', [] ==> '(p->p)'})¶ Large axiomatic system for implication and negation, consisting of
MP,I0,I1,D,I2,N,NI,NN, andR.
-
propositions.axiomatic_systems.HILBERT_AXIOMATIC_SYSTEM= frozenset({['p', '(p->q)'] ==> 'q', [] ==> '((p->(q->r))->((p->q)->(p->r)))', [] ==> '(q->(p->q))', [] ==> '((~q->~p)->(p->q))'})¶ Hilbert axiomatic system for implication and negation, consisting of
MP,I1,D, andN.
-
propositions.axiomatic_systems.A= [] ==> '(p->(q->(p&q)))'¶ Conjunction introduction
-
propositions.axiomatic_systems.NA1= [] ==> '(~q->~(p&q))'¶ Negative-conjunction introduction (right)
-
propositions.axiomatic_systems.NA2= [] ==> '(~p->~(p&q))'¶ Negative-conjunction introduction (left)
-
propositions.axiomatic_systems.T= [] ==> 'T'¶ Truth introduction
-
propositions.axiomatic_systems.NF= [] ==> '~F'¶ Negative-falsity introduction
-
propositions.axiomatic_systems.AXIOMATIC_SYSTEM_FULL= frozenset({[] ==> '((p->(q->r))->((p->q)->(p->r)))', [] ==> '(~q->~(p&q))', [] ==> '(~p->~(p&q))', [] ==> '(p->~~p)', [] ==> '(~p->(~q->~(p|q)))', [] ==> '(p->(p|q))', [] ==> '((~q->~p)->(p->q))', [] ==> 'T', ['p', '(p->q)'] ==> 'q', [] ==> '~F', [] ==> '(p->(~q->~(p->q)))', [] ==> '(~p->(p->q))', [] ==> '(p->(q->(p&q)))', [] ==> '((q->p)->((~q->p)->p))', [] ==> '(q->(p->q))', [] ==> '(q->(p|q))', [] ==> '(p->p)'})¶ Large axiomatic system for all operators, consisting of the rules in
AXIOMATIC_SYSTEM, as well asA,NA1,NA2,O1,O2,NO,T, andNF.
-
propositions.axiomatic_systems.N_ALTERNATIVE= [] ==> '((~q->~p)->((~q->p)->q))'¶ Reductio ad absurdum
-
propositions.axiomatic_systems.HILBERT_AXIOMATIC_SYSTEM_ALTERNATIVE= frozenset({['p', '(p->q)'] ==> 'q', [] ==> '((~q->~p)->((~q->p)->q))', [] ==> '((p->(q->r))->((p->q)->(p->r)))', [] ==> '(q->(p->q))'})¶ Hilbert axiomatic system for implication and negation, with
Nreplaced byN_ALTERNATIVE.
-
propositions.axiomatic_systems.AE1= [] ==> '((p&q)->q)'¶ Conjunction elimination (right)
-
propositions.axiomatic_systems.AE2= [] ==> '((p&q)->p)'¶ Conjunction elimination (left)
-
propositions.axiomatic_systems.OE= [] ==> '((p->r)->((q->r)->((p|q)->r)))'¶ Disjunction elimination
-
propositions.axiomatic_systems.HILBERT_AXIOMATIC_SYSTEM_FULL= frozenset({[] ==> '((p->(q->r))->((p->q)->(p->r)))', [] ==> '((p&q)->p)', [] ==> '(p->(p|q))', [] ==> 'T', ['p', '(p->q)'] ==> 'q', [] ==> '~F', [] ==> '((p&q)->q)', [] ==> '(p->(q->(p&q)))', [] ==> '((p->r)->((q->r)->((p|q)->r)))', [] ==> '(q->(p->q))', [] ==> '(q->(p|q))', [] ==> '((~q->~p)->(p->q))'})¶ Hilbert axiomatic system for all operators, consisting of the rules in
HILBERT_AXIOMATIC_SYSTEM, as well asA,AE1,AE2,O1,O2,OE,T, andNF.