propositions.some_proofs module¶
Some proofs in Propositional Logic.
-
propositions.some_proofs.A_RULE= ['x', 'y'] ==> '(x&y)'¶ Conjunction introduction inference rule
-
propositions.some_proofs.AE1_RULE= ['(x&y)'] ==> 'y'¶ Conjunction elimination (right) inference rule
-
propositions.some_proofs.AE2_RULE= ['(x&y)'] ==> 'x'¶ Conjunction elimination (left) inference rule
-
propositions.some_proofs.prove_and_commutativity()¶ Proves
'(q&p)'from'(p&q)'viaA_RULE,AE1_RULE, andAE2_RULE.
-
propositions.some_proofs.prove_I0()¶
-
propositions.some_proofs.HS= ['(p->q)', '(q->r)'] ==> '(p->r)'¶ Hypothetical syllogism
-
propositions.some_proofs.prove_hypothetical_syllogism()¶
-
propositions.some_proofs.prove_I2()¶
-
propositions.some_proofs._NNE= [] ==> '(~~p->p)'¶ Double-negation elimination
-
propositions.some_proofs._prove_NNE()¶
-
propositions.some_proofs.prove_NN()¶
-
propositions.some_proofs._CP= [] ==> '((p->q)->(~q->~p))'¶ Contraposition
-
propositions.some_proofs._prove_CP()¶
-
propositions.some_proofs.prove_NI()¶
-
propositions.some_proofs._CM= ['(~p->p)'] ==> 'p'¶ Consequentia mirabilis
-
propositions.some_proofs._prove_CM()¶
-
propositions.some_proofs.prove_R()¶
-
propositions.some_proofs.prove_N()¶
-
propositions.some_proofs.prove_NA1()¶
-
propositions.some_proofs.prove_NA2()¶